Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant

Descripción del Articulo

We report the application of the Model-based Predictive Control (MPC) to improve the performance of the start-up of a 150-175 MW combined cycle power plant whose gas turbine is fueled by natural gas. In concrete the simulations have shown that the efficient drum level control is reflected on the imp...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/370
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/370
https://ieeexplore.ieee.org/document/7750860
http://dx.doi.org/10.1109/ETCM.2016.7750860
Nivel de acceso:acceso embargado
Materia:Combined cycle power plants
Convolution
Gas turbines
MIMO systems
Model predictive control
Combined cycle
Computational error
Convolution integrals
Convolution model
Drum Level
Expected power
Improvement of power efficiencies
Model based predictive control
Predictive control systems
id UUCH_dc964be8f7fc643b6668400d138459ce
oai_identifier_str oai:repositorio.uch.edu.pe:uch/370
network_acronym_str UUCH
network_name_str UCH-Institucional
repository_id_str 4783
spelling Nieto Chaupis, Huber12 October 2016 through 14 October 20162019-08-25T20:50:35Z2019-08-25T20:50:35Z2016-10Nieto Chaupis, H. (Octubre, 2016). Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant. En Ecuador Technical Chapters Meeting (ETCM), Ecuador.http://repositorio.uch.edu.pe/handle/uch/370https://ieeexplore.ieee.org/document/7750860http://dx.doi.org/10.1109/ETCM.2016.775086010.1109/ETCM.2016.7750860IEEE Ecuador Technical Chapters Meeting, ETCM2-s2.0-85007014936We report the application of the Model-based Predictive Control (MPC) to improve the performance of the start-up of a 150-175 MW combined cycle power plant whose gas turbine is fueled by natural gas. In concrete the simulations have shown that the efficient drum level control is reflected on the improvement of power efficiency in the sense of reaching the 225 MW set point in around 45 minutes faster than the case of PID. Experimental data taken from ordinary runs from power plant was used for ends of system identification which is based on convolution integrals resulting well adjustable to the acquired data. Simulations have demonstrated that the performance of the MPC surpasses to the one of classic PID essentially in two aspects: (i) reducing the time for reaching set point and (ii) avoiding unexpected critical situations during the plant start-up. Results have indicated that the MPC might reduce in up to 45±5 minutes the time of reaching the set point established to be 225MWwithin a computational error of 5%, which is translated as the MPC error of order of 2.5% working as software in plant. All these results might sustain the fact that the MPC based on convolution models appears to be an interesting scheme to optimize the full functionality in power plants whose expected power is ranging between 200 and 250 MW.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-25T20:50:35Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-25T20:50:35Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2016-10engInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/articleIEEE Ecuador Technical Chapters Meeting, ETCM 2016info:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHCombined cycle power plantsConvolutionGas turbinesMIMO systemsModel predictive controlCombined cycleComputational errorConvolution integralsConvolution modelDrum LevelExpected powerImprovement of power efficienciesModel based predictive controlPredictive control systemsProspects of model predictive control of the drum level at a 225 MW combined cycle power plantinfo:eu-repo/semantics/conferenceObjectuch/370oai:repositorio.uch.edu.pe:uch/3702019-12-20 18:34:00.833Repositorio UCHuch.dspace@gmail.com
dc.title.en_PE.fl_str_mv Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
title Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
spellingShingle Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
Nieto Chaupis, Huber
Combined cycle power plants
Convolution
Gas turbines
MIMO systems
Model predictive control
Combined cycle
Computational error
Convolution integrals
Convolution model
Drum Level
Expected power
Improvement of power efficiencies
Model based predictive control
Predictive control systems
title_short Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
title_full Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
title_fullStr Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
title_full_unstemmed Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
title_sort Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant
author Nieto Chaupis, Huber
author_facet Nieto Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto Chaupis, Huber
dc.subject.en.fl_str_mv Combined cycle power plants
Convolution
Gas turbines
MIMO systems
Model predictive control
Combined cycle
Computational error
Convolution integrals
Convolution model
Drum Level
Expected power
Improvement of power efficiencies
Model based predictive control
Predictive control systems
topic Combined cycle power plants
Convolution
Gas turbines
MIMO systems
Model predictive control
Combined cycle
Computational error
Convolution integrals
Convolution model
Drum Level
Expected power
Improvement of power efficiencies
Model based predictive control
Predictive control systems
description We report the application of the Model-based Predictive Control (MPC) to improve the performance of the start-up of a 150-175 MW combined cycle power plant whose gas turbine is fueled by natural gas. In concrete the simulations have shown that the efficient drum level control is reflected on the improvement of power efficiency in the sense of reaching the 225 MW set point in around 45 minutes faster than the case of PID. Experimental data taken from ordinary runs from power plant was used for ends of system identification which is based on convolution integrals resulting well adjustable to the acquired data. Simulations have demonstrated that the performance of the MPC surpasses to the one of classic PID essentially in two aspects: (i) reducing the time for reaching set point and (ii) avoiding unexpected critical situations during the plant start-up. Results have indicated that the MPC might reduce in up to 45±5 minutes the time of reaching the set point established to be 225MWwithin a computational error of 5%, which is translated as the MPC error of order of 2.5% working as software in plant. All these results might sustain the fact that the MPC based on convolution models appears to be an interesting scheme to optimize the full functionality in power plants whose expected power is ranging between 200 and 250 MW.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2019-08-25T20:50:35Z
dc.date.available.none.fl_str_mv 2019-08-25T20:50:35Z
dc.date.issued.fl_str_mv 2016-10
dc.type.en_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.en_PE.fl_str_mv Nieto Chaupis, H. (Octubre, 2016). Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant. En Ecuador Technical Chapters Meeting (ETCM), Ecuador.
dc.identifier.uri.none.fl_str_mv http://repositorio.uch.edu.pe/handle/uch/370
https://ieeexplore.ieee.org/document/7750860
http://dx.doi.org/10.1109/ETCM.2016.7750860
dc.identifier.doi.en_PE.fl_str_mv 10.1109/ETCM.2016.7750860
dc.identifier.journal.en_PE.fl_str_mv IEEE Ecuador Technical Chapters Meeting, ETCM
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85007014936
identifier_str_mv Nieto Chaupis, H. (Octubre, 2016). Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant. En Ecuador Technical Chapters Meeting (ETCM), Ecuador.
10.1109/ETCM.2016.7750860
IEEE Ecuador Technical Chapters Meeting, ETCM
2-s2.0-85007014936
url http://repositorio.uch.edu.pe/handle/uch/370
https://ieeexplore.ieee.org/document/7750860
http://dx.doi.org/10.1109/ETCM.2016.7750860
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.en_PE.fl_str_mv info:eu-repo/semantics/article
dc.relation.ispartof.none.fl_str_mv IEEE Ecuador Technical Chapters Meeting, ETCM 2016
dc.rights.en_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.coverage.temporal.none.fl_str_mv 12 October 2016 through 14 October 2016
dc.publisher.en_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.en_PE.fl_str_mv Repositorio Institucional - UCH
Universidad de Ciencias y Humanidades
dc.source.none.fl_str_mv reponame:UCH-Institucional
instname:Universidad de Ciencias y Humanidades
instacron:UCH
instname_str Universidad de Ciencias y Humanidades
instacron_str UCH
institution UCH
reponame_str UCH-Institucional
collection UCH-Institucional
repository.name.fl_str_mv Repositorio UCH
repository.mail.fl_str_mv uch.dspace@gmail.com
_version_ 1835549007348236288
score 13.977308
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).