Testing a predictive control with stochastic model in a balls mill grinding circuit
Descripción del Articulo
In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist m...
| Autor: | |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2014 |
| Institución: | Universidad de Ciencias y Humanidades |
| Repositorio: | UCH-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.uch.edu.pe:uch/322 |
| Enlace del recurso: | http://repositorio.uch.edu.pe/handle/uch/322 http://dx.doi.org/10.1109/INDUSCON.2014.7059397 https://ieeexplore.ieee.org/document/7059397/citations#citations |
| Nivel de acceso: | acceso embargado |
| Materia: | Ball mills Mining Grinding (machining) Model predictive control Particle size Predictive control systems Stochastic control systems Stochastic systems Circulants Control system simulations Mill-grinding Quantitative measurement Stochastic formulation Stochastic variable Stochastic models |
| id |
UUCH_93e12f11063713ce0bdbbfee1067047e |
|---|---|
| oai_identifier_str |
oai:repositorio.uch.edu.pe:uch/322 |
| network_acronym_str |
UUCH |
| network_name_str |
UCH-Institucional |
| repository_id_str |
4783 |
| spelling |
Nieto Chaupis, Huber7 December 2014 through 10 December 20142019-08-17T22:05:05Z2019-08-17T22:05:05Z2014-12Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil.http://repositorio.uch.edu.pe/handle/uch/322http://dx.doi.org/10.1109/INDUSCON.2014.7059397https://ieeexplore.ieee.org/document/7059397/citations#citations10.1109/INDUSCON.2014.7059397IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON2-s2.0-84946686073In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist mathematical methodology. Thus, the perceived dynamics is simulated by emphasizing those possible scenarios of alarm situations in where overloading might collapse the system. Under this perception, the system identification is based on probabilities. Once the model is built, it enters in a based-model predictive control by taking into account the hypothesis that the circulant load and water are under interaction each other. Although the quantitative measurement of this interaction might be speculative, it is not discarded that this interaction might be actually the main source of disturbs on the the particle size evolution. The results have shown positive prospects of the proposed methodology as seen in the control system simulations in where the particle size acquires stability. Furthermore the dramatic reduction of alarms events supports the idea that the MPC is still robust even with stochastic formulations.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-17T22:05:05Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-17T22:05:05Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2014-12Axxiom;CEMIG;et al.;Governo de Minas;Ohmini;YokogawaengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/article11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014info:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHBall millsMiningGrinding (machining)Model predictive controlParticle sizePredictive control systemsStochastic control systemsStochastic systemsCirculantsControl system simulationsMill-grindingQuantitative measurementStochastic formulationStochastic variableStochastic modelsTesting a predictive control with stochastic model in a balls mill grinding circuitinfo:eu-repo/semantics/conferenceObjectuch/322oai:repositorio.uch.edu.pe:uch/3222019-12-20 18:34:00.83Repositorio UCHuch.dspace@gmail.com |
| dc.title.en_PE.fl_str_mv |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| title |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| spellingShingle |
Testing a predictive control with stochastic model in a balls mill grinding circuit Nieto Chaupis, Huber Ball mills Mining Grinding (machining) Model predictive control Particle size Predictive control systems Stochastic control systems Stochastic systems Circulants Control system simulations Mill-grinding Quantitative measurement Stochastic formulation Stochastic variable Stochastic models |
| title_short |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| title_full |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| title_fullStr |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| title_full_unstemmed |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| title_sort |
Testing a predictive control with stochastic model in a balls mill grinding circuit |
| author |
Nieto Chaupis, Huber |
| author_facet |
Nieto Chaupis, Huber |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Nieto Chaupis, Huber |
| dc.subject.en.fl_str_mv |
Ball mills Mining Grinding (machining) Model predictive control Particle size Predictive control systems Stochastic control systems Stochastic systems Circulants Control system simulations Mill-grinding Quantitative measurement Stochastic formulation Stochastic variable Stochastic models |
| topic |
Ball mills Mining Grinding (machining) Model predictive control Particle size Predictive control systems Stochastic control systems Stochastic systems Circulants Control system simulations Mill-grinding Quantitative measurement Stochastic formulation Stochastic variable Stochastic models |
| description |
In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist mathematical methodology. Thus, the perceived dynamics is simulated by emphasizing those possible scenarios of alarm situations in where overloading might collapse the system. Under this perception, the system identification is based on probabilities. Once the model is built, it enters in a based-model predictive control by taking into account the hypothesis that the circulant load and water are under interaction each other. Although the quantitative measurement of this interaction might be speculative, it is not discarded that this interaction might be actually the main source of disturbs on the the particle size evolution. The results have shown positive prospects of the proposed methodology as seen in the control system simulations in where the particle size acquires stability. Furthermore the dramatic reduction of alarms events supports the idea that the MPC is still robust even with stochastic formulations. |
| publishDate |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2019-08-17T22:05:05Z |
| dc.date.available.none.fl_str_mv |
2019-08-17T22:05:05Z |
| dc.date.issued.fl_str_mv |
2014-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.citation.en_PE.fl_str_mv |
Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil. |
| dc.identifier.uri.none.fl_str_mv |
http://repositorio.uch.edu.pe/handle/uch/322 http://dx.doi.org/10.1109/INDUSCON.2014.7059397 https://ieeexplore.ieee.org/document/7059397/citations#citations |
| dc.identifier.doi.en_PE.fl_str_mv |
10.1109/INDUSCON.2014.7059397 |
| dc.identifier.journal.en_PE.fl_str_mv |
IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84946686073 |
| identifier_str_mv |
Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil. 10.1109/INDUSCON.2014.7059397 IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2-s2.0-84946686073 |
| url |
http://repositorio.uch.edu.pe/handle/uch/322 http://dx.doi.org/10.1109/INDUSCON.2014.7059397 https://ieeexplore.ieee.org/document/7059397/citations#citations |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.en_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.relation.ispartof.none.fl_str_mv |
11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014 |
| dc.rights.en_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.coverage.temporal.none.fl_str_mv |
7 December 2014 through 10 December 2014 |
| dc.publisher.en_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.en_PE.fl_str_mv |
Repositorio Institucional - UCH Universidad de Ciencias y Humanidades |
| dc.source.none.fl_str_mv |
reponame:UCH-Institucional instname:Universidad de Ciencias y Humanidades instacron:UCH |
| instname_str |
Universidad de Ciencias y Humanidades |
| instacron_str |
UCH |
| institution |
UCH |
| reponame_str |
UCH-Institucional |
| collection |
UCH-Institucional |
| repository.name.fl_str_mv |
Repositorio UCH |
| repository.mail.fl_str_mv |
uch.dspace@gmail.com |
| _version_ |
1835549164652462080 |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).