Testing a predictive control with stochastic model in a balls mill grinding circuit

Descripción del Articulo

In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist m...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2014
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/322
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/322
http://dx.doi.org/10.1109/INDUSCON.2014.7059397
https://ieeexplore.ieee.org/document/7059397/citations#citations
Nivel de acceso:acceso embargado
Materia:Ball mills
Mining
Grinding (machining)
Model predictive control
Particle size
Predictive control systems
Stochastic control systems
Stochastic systems
Circulants
Control system simulations
Mill-grinding
Quantitative measurement
Stochastic formulation
Stochastic variable
Stochastic models
id UUCH_93e12f11063713ce0bdbbfee1067047e
oai_identifier_str oai:repositorio.uch.edu.pe:uch/322
network_acronym_str UUCH
network_name_str UCH-Institucional
repository_id_str 4783
spelling Nieto Chaupis, Huber7 December 2014 through 10 December 20142019-08-17T22:05:05Z2019-08-17T22:05:05Z2014-12Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil.http://repositorio.uch.edu.pe/handle/uch/322http://dx.doi.org/10.1109/INDUSCON.2014.7059397https://ieeexplore.ieee.org/document/7059397/citations#citations10.1109/INDUSCON.2014.7059397IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON2-s2.0-84946686073In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist mathematical methodology. Thus, the perceived dynamics is simulated by emphasizing those possible scenarios of alarm situations in where overloading might collapse the system. Under this perception, the system identification is based on probabilities. Once the model is built, it enters in a based-model predictive control by taking into account the hypothesis that the circulant load and water are under interaction each other. Although the quantitative measurement of this interaction might be speculative, it is not discarded that this interaction might be actually the main source of disturbs on the the particle size evolution. The results have shown positive prospects of the proposed methodology as seen in the control system simulations in where the particle size acquires stability. Furthermore the dramatic reduction of alarms events supports the idea that the MPC is still robust even with stochastic formulations.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-17T22:05:05Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-17T22:05:05Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2014-12Axxiom;CEMIG;et al.;Governo de Minas;Ohmini;YokogawaengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/article11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014info:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHBall millsMiningGrinding (machining)Model predictive controlParticle sizePredictive control systemsStochastic control systemsStochastic systemsCirculantsControl system simulationsMill-grindingQuantitative measurementStochastic formulationStochastic variableStochastic modelsTesting a predictive control with stochastic model in a balls mill grinding circuitinfo:eu-repo/semantics/conferenceObjectuch/322oai:repositorio.uch.edu.pe:uch/3222019-12-20 18:34:00.83Repositorio UCHuch.dspace@gmail.com
dc.title.en_PE.fl_str_mv Testing a predictive control with stochastic model in a balls mill grinding circuit
title Testing a predictive control with stochastic model in a balls mill grinding circuit
spellingShingle Testing a predictive control with stochastic model in a balls mill grinding circuit
Nieto Chaupis, Huber
Ball mills
Mining
Grinding (machining)
Model predictive control
Particle size
Predictive control systems
Stochastic control systems
Stochastic systems
Circulants
Control system simulations
Mill-grinding
Quantitative measurement
Stochastic formulation
Stochastic variable
Stochastic models
title_short Testing a predictive control with stochastic model in a balls mill grinding circuit
title_full Testing a predictive control with stochastic model in a balls mill grinding circuit
title_fullStr Testing a predictive control with stochastic model in a balls mill grinding circuit
title_full_unstemmed Testing a predictive control with stochastic model in a balls mill grinding circuit
title_sort Testing a predictive control with stochastic model in a balls mill grinding circuit
author Nieto Chaupis, Huber
author_facet Nieto Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto Chaupis, Huber
dc.subject.en.fl_str_mv Ball mills
Mining
Grinding (machining)
Model predictive control
Particle size
Predictive control systems
Stochastic control systems
Stochastic systems
Circulants
Control system simulations
Mill-grinding
Quantitative measurement
Stochastic formulation
Stochastic variable
Stochastic models
topic Ball mills
Mining
Grinding (machining)
Model predictive control
Particle size
Predictive control systems
Stochastic control systems
Stochastic systems
Circulants
Control system simulations
Mill-grinding
Quantitative measurement
Stochastic formulation
Stochastic variable
Stochastic models
description In this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist mathematical methodology. Thus, the perceived dynamics is simulated by emphasizing those possible scenarios of alarm situations in where overloading might collapse the system. Under this perception, the system identification is based on probabilities. Once the model is built, it enters in a based-model predictive control by taking into account the hypothesis that the circulant load and water are under interaction each other. Although the quantitative measurement of this interaction might be speculative, it is not discarded that this interaction might be actually the main source of disturbs on the the particle size evolution. The results have shown positive prospects of the proposed methodology as seen in the control system simulations in where the particle size acquires stability. Furthermore the dramatic reduction of alarms events supports the idea that the MPC is still robust even with stochastic formulations.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2019-08-17T22:05:05Z
dc.date.available.none.fl_str_mv 2019-08-17T22:05:05Z
dc.date.issued.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.en_PE.fl_str_mv Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil.
dc.identifier.uri.none.fl_str_mv http://repositorio.uch.edu.pe/handle/uch/322
http://dx.doi.org/10.1109/INDUSCON.2014.7059397
https://ieeexplore.ieee.org/document/7059397/citations#citations
dc.identifier.doi.en_PE.fl_str_mv 10.1109/INDUSCON.2014.7059397
dc.identifier.journal.en_PE.fl_str_mv IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON
dc.identifier.scopus.none.fl_str_mv 2-s2.0-84946686073
identifier_str_mv Nieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil.
10.1109/INDUSCON.2014.7059397
IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON
2-s2.0-84946686073
url http://repositorio.uch.edu.pe/handle/uch/322
http://dx.doi.org/10.1109/INDUSCON.2014.7059397
https://ieeexplore.ieee.org/document/7059397/citations#citations
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.en_PE.fl_str_mv info:eu-repo/semantics/article
dc.relation.ispartof.none.fl_str_mv 11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014
dc.rights.en_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.coverage.temporal.none.fl_str_mv 7 December 2014 through 10 December 2014
dc.publisher.en_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.en_PE.fl_str_mv Repositorio Institucional - UCH
Universidad de Ciencias y Humanidades
dc.source.none.fl_str_mv reponame:UCH-Institucional
instname:Universidad de Ciencias y Humanidades
instacron:UCH
instname_str Universidad de Ciencias y Humanidades
instacron_str UCH
institution UCH
reponame_str UCH-Institucional
collection UCH-Institucional
repository.name.fl_str_mv Repositorio UCH
repository.mail.fl_str_mv uch.dspace@gmail.com
_version_ 1835549164652462080
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).