Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
Descripción del Articulo
COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Pr...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5943 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5943 http://doi.org/https://doi.org/10.3390/economies10080188 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Risk assessment (Finances) Predictive modelling https://purl.org/pe-repo/ocde/ford#5.02.00 |
| id |
UTPD_6344834dc3d1f0a95024d3c447513ce3 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5943 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| title |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| spellingShingle |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models Soria Quijaite, Juan Jesús Machine learning Risk assessment (Finances) Predictive modelling https://purl.org/pe-repo/ocde/ford#5.02.00 |
| title_short |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| title_full |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| title_fullStr |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| title_full_unstemmed |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| title_sort |
Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models |
| author |
Soria Quijaite, Juan Jesús |
| author_facet |
Soria Quijaite, Juan Jesús Geraldo-Campos, Luis Alberto Pando-Ezcurra, Tamara |
| author_role |
author |
| author2 |
Geraldo-Campos, Luis Alberto Pando-Ezcurra, Tamara |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Soria Quijaite, Juan Jesús Geraldo-Campos, Luis Alberto Pando-Ezcurra, Tamara |
| dc.subject.es_PE.fl_str_mv |
Machine learning Risk assessment (Finances) Predictive modelling |
| topic |
Machine learning Risk assessment (Finances) Predictive modelling https://purl.org/pe-repo/ocde/ford#5.02.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.00 |
| description |
COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-12T16:14:39Z |
| dc.date.available.none.fl_str_mv |
2022-09-12T16:14:39Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2227-7099 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5943 |
| dc.identifier.journal.es_PE.fl_str_mv |
Economies |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/https://doi.org/10.3390/economies10080188 |
| identifier_str_mv |
2227-7099 Economies |
| url |
https://hdl.handle.net/20.500.12867/5943 http://doi.org/https://doi.org/10.3390/economies10080188 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Economies;vol. 10, n° 8 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.publisher.country.es_PE.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/1/J.Soria_Economies_Articulo_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/3/J.Soria_Economies_Articulo_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/4/J.Soria_Economies_Articulo_eng_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 a76261654f582436f69be84ec7833833 cbddca0d141e346f893f4959a54ffb6b e5f2340fdcc4f8b8f309c118fe85708d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984934519767040 |
| spelling |
Soria Quijaite, Juan JesúsGeraldo-Campos, Luis AlbertoPando-Ezcurra, Tamara2022-09-12T16:14:39Z2022-09-12T16:14:39Z20222227-7099https://hdl.handle.net/20.500.12867/5943Economieshttp://doi.org/https://doi.org/10.3390/economies10080188COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.Campus Lima Surapplication/pdfengMultidisciplinary Digital Publishing InstituteCHEconomies;vol. 10, n° 8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningRisk assessment (Finances)Predictive modellinghttps://purl.org/pe-repo/ocde/ford#5.02.00Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALJ.Soria_Economies_Articulo_eng_2022.pdfJ.Soria_Economies_Articulo_eng_2022.pdfapplication/pdf2083309http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/1/J.Soria_Economies_Articulo_eng_2022.pdfa76261654f582436f69be84ec7833833MD51TEXTJ.Soria_Economies_Articulo_eng_2022.pdf.txtJ.Soria_Economies_Articulo_eng_2022.pdf.txtExtracted texttext/plain79840http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/3/J.Soria_Economies_Articulo_eng_2022.pdf.txtcbddca0d141e346f893f4959a54ffb6bMD53THUMBNAILJ.Soria_Economies_Articulo_eng_2022.pdf.jpgJ.Soria_Economies_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg23993http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/4/J.Soria_Economies_Articulo_eng_2022.pdf.jpge5f2340fdcc4f8b8f309c118fe85708dMD5420.500.12867/5943oai:repositorio.utp.edu.pe:20.500.12867/59432022-09-12 14:03:10.13Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).