Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models

Descripción del Articulo

COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Pr...

Descripción completa

Detalles Bibliográficos
Autores: Soria Quijaite, Juan Jesús, Geraldo-Campos, Luis Alberto, Pando-Ezcurra, Tamara
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5943
Enlace del recurso:https://hdl.handle.net/20.500.12867/5943
http://doi.org/https://doi.org/10.3390/economies10080188
Nivel de acceso:acceso abierto
Materia:Machine learning
Risk assessment (Finances)
Predictive modelling
https://purl.org/pe-repo/ocde/ford#5.02.00
id UTPD_6344834dc3d1f0a95024d3c447513ce3
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5943
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
title Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
spellingShingle Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
Soria Quijaite, Juan Jesús
Machine learning
Risk assessment (Finances)
Predictive modelling
https://purl.org/pe-repo/ocde/ford#5.02.00
title_short Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
title_full Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
title_fullStr Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
title_full_unstemmed Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
title_sort Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models
author Soria Quijaite, Juan Jesús
author_facet Soria Quijaite, Juan Jesús
Geraldo-Campos, Luis Alberto
Pando-Ezcurra, Tamara
author_role author
author2 Geraldo-Campos, Luis Alberto
Pando-Ezcurra, Tamara
author2_role author
author
dc.contributor.author.fl_str_mv Soria Quijaite, Juan Jesús
Geraldo-Campos, Luis Alberto
Pando-Ezcurra, Tamara
dc.subject.es_PE.fl_str_mv Machine learning
Risk assessment (Finances)
Predictive modelling
topic Machine learning
Risk assessment (Finances)
Predictive modelling
https://purl.org/pe-repo/ocde/ford#5.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.00
description COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-12T16:14:39Z
dc.date.available.none.fl_str_mv 2022-09-12T16:14:39Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2227-7099
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5943
dc.identifier.journal.es_PE.fl_str_mv Economies
dc.identifier.doi.none.fl_str_mv http://doi.org/https://doi.org/10.3390/economies10080188
identifier_str_mv 2227-7099
Economies
url https://hdl.handle.net/20.500.12867/5943
http://doi.org/https://doi.org/10.3390/economies10080188
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Economies;vol. 10, n° 8
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/1/J.Soria_Economies_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/3/J.Soria_Economies_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/4/J.Soria_Economies_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a76261654f582436f69be84ec7833833
cbddca0d141e346f893f4959a54ffb6b
e5f2340fdcc4f8b8f309c118fe85708d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984934519767040
spelling Soria Quijaite, Juan JesúsGeraldo-Campos, Luis AlbertoPando-Ezcurra, Tamara2022-09-12T16:14:39Z2022-09-12T16:14:39Z20222227-7099https://hdl.handle.net/20.500.12867/5943Economieshttp://doi.org/https://doi.org/10.3390/economies10080188COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model (λ60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model (λ100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.Campus Lima Surapplication/pdfengMultidisciplinary Digital Publishing InstituteCHEconomies;vol. 10, n° 8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningRisk assessment (Finances)Predictive modellinghttps://purl.org/pe-repo/ocde/ford#5.02.00Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALJ.Soria_Economies_Articulo_eng_2022.pdfJ.Soria_Economies_Articulo_eng_2022.pdfapplication/pdf2083309http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/1/J.Soria_Economies_Articulo_eng_2022.pdfa76261654f582436f69be84ec7833833MD51TEXTJ.Soria_Economies_Articulo_eng_2022.pdf.txtJ.Soria_Economies_Articulo_eng_2022.pdf.txtExtracted texttext/plain79840http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/3/J.Soria_Economies_Articulo_eng_2022.pdf.txtcbddca0d141e346f893f4959a54ffb6bMD53THUMBNAILJ.Soria_Economies_Articulo_eng_2022.pdf.jpgJ.Soria_Economies_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg23993http://repositorio.utp.edu.pe/bitstream/20.500.12867/5943/4/J.Soria_Economies_Articulo_eng_2022.pdf.jpge5f2340fdcc4f8b8f309c118fe85708dMD5420.500.12867/5943oai:repositorio.utp.edu.pe:20.500.12867/59432022-09-12 14:03:10.13Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).