Extraction, Chemical Functionalization, and Application of Stipa obtusa Cellulose Microfibers for Lead Ion Adsorption
Descripción del Articulo
        Environmental contamination by heavy metals, such as lead (Pb2+), presents significant risks to ecosystems and public health, necessitating the development of innovative and sustainable remediation methods. This study introduces a novel adsorbent derived from microcellulose (MC) extracted from Stipa...
              
            
    
                        | Autores: | , , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2025 | 
| Institución: | Universidad de Ingeniería y tecnología | 
| Repositorio: | UTEC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.utec.edu.pe:20.500.12815/485 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12815/485 https://doi.org/10.1080/15440478.2025.2476631  | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Adsorption isotherms Agricultural pollution Air pollution Bioremediation Gas adsorption Heavy metals Insulator contamination Microfibers Pollution detection Soil pollution Thermal pollution Water pollution Adsorption of metal ions Cellulose microfiber Lead ions Stipa obtusa Adsorption Gravimetry Lead https://purl.org/pe-repo/ocde/ford#2.04.01  | 
| Sumario: | Environmental contamination by heavy metals, such as lead (Pb2+), presents significant risks to ecosystems and public health, necessitating the development of innovative and sustainable remediation methods. This study introduces a novel adsorbent derived from microcellulose (MC) extracted from Stipa obtusa, a grass species native to the Andean regions of Peru, Ecuador, and Bolivia, for the removal of lead ions from aqueous solutions. MC fibers were isolated through thermochemical processing, followed by chemical functionalization with sodium chlorite (NaClO2). The resulting functionalized microfibers (FMC) were characterized using elemental analysis, Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller surface area analysis (BET), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Batch adsorption experiments identified optimal conditions: an adsorbent dosage of 0.4 mg/L, pH 5, and a contact time of 60 min, achieving a maximum adsorption capacity of 34 mg/g. Kinetic studies indicated the adsorption process followed a pseudo-second-order model, while the adsorption isotherm data best fitted the Freundlich model, indicating a heterogeneous adsorption process. These results demonstrate the potential of FMC as an efficient and environmentally friendly adsorbent for heavy metal ion removal in water treatment. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).