Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites

Descripción del Articulo

The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this p...

Descripción completa

Detalles Bibliográficos
Autores: Mantari, J.L, Ramos, I.A, Monge, J.C.
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad de Ingeniería y tecnología
Repositorio:UTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utec.edu.pe:20.500.12815/198
Enlace del recurso:https://hdl.handle.net/20.500.12815/198
https://doi.org/10.1016/j.cja.2019.02.001
Nivel de acceso:acceso abierto
Materia:Composite materials
Plates (structural components)
Plating
Shear deformation
Shear strain
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
Shear deformation theory
Stress and displacements
Thickness distributions
Trigonometric functions
Zig-zag effects
Polynomials
id UTEC_4f874c544aad3070b7db1e7f8439d953
oai_identifier_str oai:repositorio.utec.edu.pe:20.500.12815/198
network_acronym_str UTEC
network_name_str UTEC-Institucional
repository_id_str 4822
spelling Mantari, J.LRamos, I.AMonge, J.C.2021-03-16T23:23:01Z2021-03-16T23:23:01Z2019-041000-9361https://hdl.handle.net/20.500.12815/198https://doi.org/10.1016/j.cja.2019.02.001Chinese Journal of AeronauticsThe mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.application/pdfengElsevierinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional UTECUniversidad de Ingeniería y Tecnología - UTECreponame:UTEC-Institucionalinstname:Universidad de Ingeniería y tecnologíainstacron:UTECComposite materialsPlates (structural components)PlatingShear deformationShear strainCarrera unified formulationsEquivalent single layersPrinciple of virtual displacementsShear deformation theoryStress and displacementsThickness distributionsTrigonometric functionsZig-zag effectsPolynomialsNon-polynomial Zig-Zag and ESL shear deformation theory to study advanced compositesinfo:eu-repo/semantics/articleORIGINAL10.1016j.cja.2019.02.001.pdf10.1016j.cja.2019.02.001.pdf10.1016j.cja.2019.02.001application/pdf4090646http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/1/10.1016j.cja.2019.02.001.pdfb40d97bb3efcdf660b35d663405e00f9MD51open accessTEXT10.1016j.cja.2019.02.001.pdf.txt10.1016j.cja.2019.02.001.pdf.txtExtracted texttext/plain44943http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/6/10.1016j.cja.2019.02.001.pdf.txtdca01c1b9aeab0187c782079fd1758f2MD56open accessTHUMBNAIL10.1016j.cja.2019.02.001.pdf.jpg10.1016j.cja.2019.02.001.pdf.jpgGenerated Thumbnailimage/jpeg13114http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/7/10.1016j.cja.2019.02.001.pdf.jpgf1d02d5e3d8623b3eda563e7b516ad82MD57open access20.500.12815/198oai:repositorio.utec.edu.pe:20.500.12815/1982024-04-10 15:56:58.956open accessRepositorio Institucional UTECrepositorio@utec.edu.pe
dc.title.es_PE.fl_str_mv Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
spellingShingle Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
Mantari, J.L
Composite materials
Plates (structural components)
Plating
Shear deformation
Shear strain
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
Shear deformation theory
Stress and displacements
Thickness distributions
Trigonometric functions
Zig-zag effects
Polynomials
title_short Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_full Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_fullStr Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_full_unstemmed Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
title_sort Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
author Mantari, J.L
author_facet Mantari, J.L
Ramos, I.A
Monge, J.C.
author_role author
author2 Ramos, I.A
Monge, J.C.
author2_role author
author
dc.contributor.author.fl_str_mv Mantari, J.L
Ramos, I.A
Monge, J.C.
dc.subject.es_PE.fl_str_mv Composite materials
Plates (structural components)
Plating
Shear deformation
Shear strain
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
Shear deformation theory
Stress and displacements
Thickness distributions
Trigonometric functions
Zig-zag effects
Polynomials
topic Composite materials
Plates (structural components)
Plating
Shear deformation
Shear strain
Carrera unified formulations
Equivalent single layers
Principle of virtual displacements
Shear deformation theory
Stress and displacements
Thickness distributions
Trigonometric functions
Zig-zag effects
Polynomials
description The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called “r” and “s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation (CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-03-16T23:23:01Z
dc.date.available.none.fl_str_mv 2021-03-16T23:23:01Z
dc.date.issued.fl_str_mv 2019-04
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.es_PE.fl_str_mv 1000-9361
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12815/198
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.1016/j.cja.2019.02.001
dc.identifier.journal.es_PE.fl_str_mv Chinese Journal of Aeronautics
identifier_str_mv 1000-9361
Chinese Journal of Aeronautics
url https://hdl.handle.net/20.500.12815/198
https://doi.org/10.1016/j.cja.2019.02.001
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.source.es_PE.fl_str_mv Repositorio Institucional UTEC
Universidad de Ingeniería y Tecnología - UTEC
dc.source.none.fl_str_mv reponame:UTEC-Institucional
instname:Universidad de Ingeniería y tecnología
instacron:UTEC
instname_str Universidad de Ingeniería y tecnología
instacron_str UTEC
institution UTEC
reponame_str UTEC-Institucional
collection UTEC-Institucional
bitstream.url.fl_str_mv http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/1/10.1016j.cja.2019.02.001.pdf
http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/6/10.1016j.cja.2019.02.001.pdf.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/198/7/10.1016j.cja.2019.02.001.pdf.jpg
bitstream.checksum.fl_str_mv b40d97bb3efcdf660b35d663405e00f9
dca01c1b9aeab0187c782079fd1758f2
f1d02d5e3d8623b3eda563e7b516ad82
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTEC
repository.mail.fl_str_mv repositorio@utec.edu.pe
_version_ 1843166369144635392
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).