Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence

Descripción del Articulo

La toma de decisiones constituye un proceso de vital importancia para las universidades, siendo uno de los indicadores más importantes en sus sistemas business intelligence el rendimiento académico. No obstante, el crecimiento de los sistemas de información genera un reto para la gestión y procesami...

Descripción completa

Detalles Bibliográficos
Autor: Alvarez Gonzaga, Braulio Ricardo
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/8359
Enlace del recurso:https://hdl.handle.net/20.500.12802/8359
Nivel de acceso:acceso abierto
Materia:Técnicas de minería de datos
Árbol de decisión
Naive Bayes
Inteligencia de negocios
Algoritmos
Base de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_c52634fe37dfff56d4896066a43f9f99
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/8359
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
title Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
spellingShingle Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
Alvarez Gonzaga, Braulio Ricardo
Técnicas de minería de datos
Árbol de decisión
Naive Bayes
Inteligencia de negocios
Algoritmos
Base de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
title_full Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
title_fullStr Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
title_full_unstemmed Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
title_sort Análisis comparativo de técnicas de minería de datos aplicadas a business intelligence
author Alvarez Gonzaga, Braulio Ricardo
author_facet Alvarez Gonzaga, Braulio Ricardo
author_role author
dc.contributor.advisor.fl_str_mv Bravo Ruiz, Jaime Arturo
dc.contributor.author.fl_str_mv Alvarez Gonzaga, Braulio Ricardo
dc.subject.es_PE.fl_str_mv Técnicas de minería de datos
Árbol de decisión
Naive Bayes
Inteligencia de negocios
Algoritmos
Base de datos
topic Técnicas de minería de datos
Árbol de decisión
Naive Bayes
Inteligencia de negocios
Algoritmos
Base de datos
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description La toma de decisiones constituye un proceso de vital importancia para las universidades, siendo uno de los indicadores más importantes en sus sistemas business intelligence el rendimiento académico. No obstante, el crecimiento de los sistemas de información genera un reto para la gestión y procesamiento de grandes volúmenes de datos de los cuales se desea obtener información relevante. En ese sentido, la minería de datos ofrece una serie de técnicas que permite realizar este descubrimiento con un alto nivel de precisión. El presente trabajo titulado “ANÁLISIS COMPARATIVO DE TÉCNICAS DE MINERÍA DE DATOS APLICADAS A BUSINESS INTELLIGENCE” tiene como objetivo general analizar comparativamente el rendimiento de técnicas de minería de datos aplicadas a soluciones business intelligence. El método propuesto inició con la selección de dos técnicas de minería de datos bajo el método no probabilístico con base a las técnicas de minería de datos disponibles y documentadas en diversas investigaciones. Posteriormente, se diseñó un método de aplicación conformado por cinco etapas: análisis y comprensión de las fuentes de datos, implementación de la base de datos en SQL Server, proceso ETL, implementación de los algoritmos de minería de datos a partir de los datos de entrada obtenidos del proceso business intelligence y procesamiento de datos. Los resultados evidenciaron que el modelo propuesto, el cual utilizó datos de entrada obtenidos de un proceso business intelligence obtuvo un rendimiento en cuanto a su precisión superior al 90% en ambas técnicas de minería de datos. Árbol de decisiones obtuvo 93.69% y Naive Bayes 93.67%. Asimismo, en cuanto al análisis de error, Naive Bayes fue la que mejor resultado obtuvo, obteniendo un error porcentual absoluto medio (MAPE) de 6.2%. La investigación concluye que las técnicas de minería aplicadas a datos obtenidos de un proceso business intelligence tienen muy buena precisión para la predicción del rendimiento académico y podrían ser utilizada en el análisis de otras variables académicas como la morosidad y la deserción, siendo la de mejor rendimiento Naive Bayes.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-22T17:39:11Z
dc.date.available.none.fl_str_mv 2021-07-22T17:39:11Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12802/8359
url https://hdl.handle.net/20.500.12802/8359
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Señor de Sipán
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
Repositorio Institucional USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
bitstream.url.fl_str_mv https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/4/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/5/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf.jpg
https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/3/license.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/1/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf
https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/2/license_rdf
bitstream.checksum.fl_str_mv 1e35de8e29dedf6a596702e8890d03ad
66c3d4837a7f7602020e849941cc29e8
8a4605be74aa9ea9d79846c1fba20a33
0b0e3ab3265691fbc4504cfc1a761f28
3655808e5dd46167956d6870b0f43800
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1845884123699216384
spelling Bravo Ruiz, Jaime ArturoAlvarez Gonzaga, Braulio Ricardo2021-07-22T17:39:11Z2021-07-22T17:39:11Z2021https://hdl.handle.net/20.500.12802/8359La toma de decisiones constituye un proceso de vital importancia para las universidades, siendo uno de los indicadores más importantes en sus sistemas business intelligence el rendimiento académico. No obstante, el crecimiento de los sistemas de información genera un reto para la gestión y procesamiento de grandes volúmenes de datos de los cuales se desea obtener información relevante. En ese sentido, la minería de datos ofrece una serie de técnicas que permite realizar este descubrimiento con un alto nivel de precisión. El presente trabajo titulado “ANÁLISIS COMPARATIVO DE TÉCNICAS DE MINERÍA DE DATOS APLICADAS A BUSINESS INTELLIGENCE” tiene como objetivo general analizar comparativamente el rendimiento de técnicas de minería de datos aplicadas a soluciones business intelligence. El método propuesto inició con la selección de dos técnicas de minería de datos bajo el método no probabilístico con base a las técnicas de minería de datos disponibles y documentadas en diversas investigaciones. Posteriormente, se diseñó un método de aplicación conformado por cinco etapas: análisis y comprensión de las fuentes de datos, implementación de la base de datos en SQL Server, proceso ETL, implementación de los algoritmos de minería de datos a partir de los datos de entrada obtenidos del proceso business intelligence y procesamiento de datos. Los resultados evidenciaron que el modelo propuesto, el cual utilizó datos de entrada obtenidos de un proceso business intelligence obtuvo un rendimiento en cuanto a su precisión superior al 90% en ambas técnicas de minería de datos. Árbol de decisiones obtuvo 93.69% y Naive Bayes 93.67%. Asimismo, en cuanto al análisis de error, Naive Bayes fue la que mejor resultado obtuvo, obteniendo un error porcentual absoluto medio (MAPE) de 6.2%. La investigación concluye que las técnicas de minería aplicadas a datos obtenidos de un proceso business intelligence tienen muy buena precisión para la predicción del rendimiento académico y podrían ser utilizada en el análisis de otras variables académicas como la morosidad y la deserción, siendo la de mejor rendimiento Naive Bayes.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSTécnicas de minería de datosÁrbol de decisiónNaive BayesInteligencia de negociosAlgoritmosBase de datoshttps://purl.org/pe-repo/ocde/ford#2.02.04Análisis comparativo de técnicas de minería de datos aplicadas a business intelligenceinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas17610253https://orcid.org/0000-0003-1929-396944967284612076Vásquez Leyva, OliverDíaz Vidarte, Miguel OrlandoBances Saavedra, David Enriquehttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisTEXTAlvarez Gonzaga Braulio Ricardo.pdf.txtAlvarez Gonzaga Braulio Ricardo.pdf.txtExtracted texttext/plain146898https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/4/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf.txt1e35de8e29dedf6a596702e8890d03adMD54THUMBNAILAlvarez Gonzaga Braulio Ricardo.pdf.jpgAlvarez Gonzaga Braulio Ricardo.pdf.jpgGenerated Thumbnailimage/jpeg10325https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/5/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf.jpg66c3d4837a7f7602020e849941cc29e8MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAlvarez Gonzaga Braulio Ricardo.pdfAlvarez Gonzaga Braulio Ricardo.pdfapplication/pdf1564090https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/1/Alvarez%20Gonzaga%20Braulio%20Ricardo.pdf0b0e3ab3265691fbc4504cfc1a761f28MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uss.edu.pe/bitstream/20.500.12802/8359/2/license_rdf3655808e5dd46167956d6870b0f43800MD5220.500.12802/8359oai:repositorio.uss.edu.pe:20.500.12802/83592021-07-23 03:03:14.134Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.088951
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).