Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes
Descripción del Articulo
Hoy en día el Perú es considerado como el país con mayor diversidad de ajíes en todo el mundo, produciendo anualmente 164 mil toneladas, de las cuales 61 mil toneladas son de Capsicum, entre ajíes y pimientos. Por ello es fundamental implementar tecnologías que permitan el cuidado y prevención de lo...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2022 |
Institución: | Universidad Señor de Sipan |
Repositorio: | USS-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/9911 |
Enlace del recurso: | https://hdl.handle.net/20.500.12802/9911 |
Nivel de acceso: | acceso abierto |
Materia: | Plántulas Capsicum annuum group Identificación de repique Algoritmos de clasificación Naive bayes Árbol de decisiones Aprendizaje automático http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
USSS_ba1a29364f86cd6eabaa1614724403e2 |
---|---|
oai_identifier_str |
oai:repositorio.uss.edu.pe:20.500.12802/9911 |
network_acronym_str |
USSS |
network_name_str |
USS-Institucional |
repository_id_str |
4829 |
dc.title.es_PE.fl_str_mv |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
title |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
spellingShingle |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes Vega Tavara, Luis Enrique Plántulas Capsicum annuum group Identificación de repique Algoritmos de clasificación Naive bayes Árbol de decisiones Aprendizaje automático http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
title_full |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
title_fullStr |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
title_full_unstemmed |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
title_sort |
Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes |
author |
Vega Tavara, Luis Enrique |
author_facet |
Vega Tavara, Luis Enrique |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Mejia Cabrera, Heber Ivan |
dc.contributor.author.fl_str_mv |
Vega Tavara, Luis Enrique |
dc.subject.es_PE.fl_str_mv |
Plántulas Capsicum annuum group Identificación de repique Algoritmos de clasificación Naive bayes Árbol de decisiones Aprendizaje automático |
topic |
Plántulas Capsicum annuum group Identificación de repique Algoritmos de clasificación Naive bayes Árbol de decisiones Aprendizaje automático http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Hoy en día el Perú es considerado como el país con mayor diversidad de ajíes en todo el mundo, produciendo anualmente 164 mil toneladas, de las cuales 61 mil toneladas son de Capsicum, entre ajíes y pimientos. Por ello es fundamental implementar tecnologías que permitan el cuidado y prevención de los cultivos, ya que el principal motivo de la poca productividad en plántulas de Capsicum Annuum Group es el déficit en el control del proceso de repique, este proceso se caracteriza por controlar la cantidad de hojas de la plántula para realizar el transplante y poder garantizar el correcto crecimiento y desarrollo de la plántula hasta obtener sus frutos. Ante el problema suscitado se controló el proceso de repique mediante la detección del área y el perimetro, esto conllevo a poder detectar si la plántula se encontraba con la cantidad de hojas adecuadas para el proceso de repique; para iniciar con el control del repique se realizó un protocolo para la adquisición de las imágenes, lo cual permitió obtener 1200 imágenes de Capsicum Annuum Group, que sirvieron para realizar un preprocesamiento de las imágenes obtenidas, teniendo en consideración que para haber segmentado la imagen se tuvo que tener cuidado de no perder regiones de interes de la plántula, por ello se realizó una conversión a 8 bit – RGB, se extrajo el canal verde de la imagen, luego se realizó una umbralización de máxima entropía para obtener la separación del background y foreground de la imagen; al visualizar la imagen umbralizada se observó que existían regiones que contenían impurezas, por ello se realizó una binarización de las imágenes con una apertura de 10 iteración y una máscara de 2x2; se procedió a calcular el área y el perímetro de la región de interes, para luego utilizar los clasificadores Naive Bayes y Árbol de Decisiones que tuvieron como resultado 100% en Precisión, Exactitud y Recall. Se concluye que se logró la identificación del repique en plántulas de Capsicum Annuum Group con una precisión del 100%, dando un mejor índice solo por el tiempo respuesta y consumo de CPU el algoritmo de clasificación Árbol de Decisiones. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-30T13:33:09Z |
dc.date.available.none.fl_str_mv |
2022-09-30T13:33:09Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12802/9911 |
url |
https://hdl.handle.net/20.500.12802/9911 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Perú |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Perú http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Señor de Sipán |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - USS |
dc.source.none.fl_str_mv |
reponame:USS-Institucional instname:Universidad Señor de Sipan instacron:USS |
instname_str |
Universidad Señor de Sipan |
instacron_str |
USS |
institution |
USS |
reponame_str |
USS-Institucional |
collection |
USS-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional USS |
bitstream.url.fl_str_mv |
http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/2/license_rdf http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/3/license.txt http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/4/Vega%20T%c3%a1vara%20Luis%20Enrique.pdf.txt http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/7/Vega%20Tavara%20Luis%20Enrique.pdf.txt http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/5/Vega%20T%c3%a1vara%20Luis%20Enrique.pdf.jpg http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/8/Vega%20Tavara%20Luis%20Enrique.pdf.jpg http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/6/Vega%20Tavara%20Luis%20Enrique.pdf |
bitstream.checksum.fl_str_mv |
3655808e5dd46167956d6870b0f43800 8a4605be74aa9ea9d79846c1fba20a33 3cc3db7e313ccc6798834cb6ac644970 4d5efacafcceee8bf16160dd4cdc4875 365eaf5bf41a32762b1973140ff6b0ea 8f9081836391ef70ab06573a611312ff 883b5e62d460bed31249c3389eb7cc1e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Señor de Sipán |
repository.mail.fl_str_mv |
repositorio@uss.edu.pe |
_version_ |
1844901777188585472 |
spelling |
Mejia Cabrera, Heber IvanVega Tavara, Luis Enrique2022-09-30T13:33:09Z2022-09-30T13:33:09Z2022https://hdl.handle.net/20.500.12802/9911Hoy en día el Perú es considerado como el país con mayor diversidad de ajíes en todo el mundo, produciendo anualmente 164 mil toneladas, de las cuales 61 mil toneladas son de Capsicum, entre ajíes y pimientos. Por ello es fundamental implementar tecnologías que permitan el cuidado y prevención de los cultivos, ya que el principal motivo de la poca productividad en plántulas de Capsicum Annuum Group es el déficit en el control del proceso de repique, este proceso se caracteriza por controlar la cantidad de hojas de la plántula para realizar el transplante y poder garantizar el correcto crecimiento y desarrollo de la plántula hasta obtener sus frutos. Ante el problema suscitado se controló el proceso de repique mediante la detección del área y el perimetro, esto conllevo a poder detectar si la plántula se encontraba con la cantidad de hojas adecuadas para el proceso de repique; para iniciar con el control del repique se realizó un protocolo para la adquisición de las imágenes, lo cual permitió obtener 1200 imágenes de Capsicum Annuum Group, que sirvieron para realizar un preprocesamiento de las imágenes obtenidas, teniendo en consideración que para haber segmentado la imagen se tuvo que tener cuidado de no perder regiones de interes de la plántula, por ello se realizó una conversión a 8 bit – RGB, se extrajo el canal verde de la imagen, luego se realizó una umbralización de máxima entropía para obtener la separación del background y foreground de la imagen; al visualizar la imagen umbralizada se observó que existían regiones que contenían impurezas, por ello se realizó una binarización de las imágenes con una apertura de 10 iteración y una máscara de 2x2; se procedió a calcular el área y el perímetro de la región de interes, para luego utilizar los clasificadores Naive Bayes y Árbol de Decisiones que tuvieron como resultado 100% en Precisión, Exactitud y Recall. Se concluye que se logró la identificación del repique en plántulas de Capsicum Annuum Group con una precisión del 100%, dando un mejor índice solo por el tiempo respuesta y consumo de CPU el algoritmo de clasificación Árbol de Decisiones.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 2.5 Perúhttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSPlántulasCapsicum annuum groupIdentificación de repiqueAlgoritmos de clasificaciónNaive bayesÁrbol de decisionesAprendizaje automáticohttp://purl.org/pe-repo/ocde/ford#2.02.04Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenesinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas41639565https://orcid.org/0000-0002-0007-092870031212612076Bances Saavedra, David EnriqueBravo Ruiz, Jaime ArturoAtalaya Urrutia, Carlos Williamhttp://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTVega Távara Luis Enrique.pdf.txtVega Távara Luis Enrique.pdf.txtExtracted texttext/plain171515http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/4/Vega%20T%c3%a1vara%20Luis%20Enrique.pdf.txt3cc3db7e313ccc6798834cb6ac644970MD54Vega Tavara Luis Enrique.pdf.txtVega Tavara Luis Enrique.pdf.txtExtracted texttext/plain171512http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/7/Vega%20Tavara%20Luis%20Enrique.pdf.txt4d5efacafcceee8bf16160dd4cdc4875MD57THUMBNAILVega Távara Luis Enrique.pdf.jpgVega Távara Luis Enrique.pdf.jpgGenerated Thumbnailimage/jpeg9459http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/5/Vega%20T%c3%a1vara%20Luis%20Enrique.pdf.jpg365eaf5bf41a32762b1973140ff6b0eaMD55Vega Tavara Luis Enrique.pdf.jpgVega Tavara Luis Enrique.pdf.jpgGenerated Thumbnailimage/jpeg9455http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/8/Vega%20Tavara%20Luis%20Enrique.pdf.jpg8f9081836391ef70ab06573a611312ffMD58ORIGINALVega Tavara Luis Enrique.pdfVega Tavara Luis Enrique.pdfapplication/pdf2836830http://repositorio.uss.edu.pe//bitstream/20.500.12802/9911/6/Vega%20Tavara%20Luis%20Enrique.pdf883b5e62d460bed31249c3389eb7cc1eMD5620.500.12802/9911oai:repositorio.uss.edu.pe:20.500.12802/99112022-10-31 03:01:20.717Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.4165325 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).