Análisis comparativo de algoritmos de machine learning para clasificar enfermedades pulmonares, haciendo uso de imágenes radiográficas
Descripción del Articulo
Las enfermedades pulmonares como el SARS-COV-2 y la neumonía plantean desafíos críticos para la salud pulmonar, requiriendo una identificación temprana para mejorar el diagnóstico y la atención médica. La presente investigación tiene como objetivo comparar algoritmos de aprendizaje automático en la...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Señor de Sipan |
Repositorio: | USS-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/13574 |
Enlace del recurso: | https://hdl.handle.net/20.500.12802/13574 |
Nivel de acceso: | acceso abierto |
Materia: | Aprendizaje automático Aprendizaje profundo Enfermedades pulmonares Imágenes radiográficas Clasificadores https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Las enfermedades pulmonares como el SARS-COV-2 y la neumonía plantean desafíos críticos para la salud pulmonar, requiriendo una identificación temprana para mejorar el diagnóstico y la atención médica. La presente investigación tiene como objetivo comparar algoritmos de aprendizaje automático en la clasificación de enfermedades pulmonares mediante imágenes radiográficas. Se recopilaron 23,000 imágenes de repositorios públicos distribuidas en conjuntos de entrenamiento y prueba. La evaluación de modelos, incluyendo ResNet50, CNN-LUNG, Regresión Logística, KNN y Árbol de Decisión, reveló una destacada precisión del 97.91%, 97.99%, 91.81%, 91.46% y 86.44% respectivamente. La implementación en Google Colab con Python y Visual Studio Code, utilizando técnicas de aumento de datos, mejoró la generalización. Los resultados, evaluados con métricas como precisión, exactitud, recall y F1-Score, subrayan el rendimiento superior de ResNet50 y CNNLUNG. Además, se destacó la eficacia de la CNN-LUNG en la identificación de casos de SARS-COV-2 y la necesidad de herramientas interactivas para la interpretación de resultados en entornos clínicos. Estos hallazgos ofrecen perspectivas esenciales para el desarrollo de herramientas diagnósticas y resaltan la eficacia sobresaliente de ResNet50 y CNN-LUNG en este contexto. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).