Análisis comparativo de algoritmos de machine learning para clasificar enfermedades pulmonares, haciendo uso de imágenes radiográficas

Descripción del Articulo

Las enfermedades pulmonares como el SARS-COV-2 y la neumonía plantean desafíos críticos para la salud pulmonar, requiriendo una identificación temprana para mejorar el diagnóstico y la atención médica. La presente investigación tiene como objetivo comparar algoritmos de aprendizaje automático en la...

Descripción completa

Detalles Bibliográficos
Autores: Huancas Chuquipoma, Hilder Rody, Renteria Arce, Alvaro
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/13574
Enlace del recurso:https://hdl.handle.net/20.500.12802/13574
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Aprendizaje profundo
Enfermedades pulmonares
Imágenes radiográficas
Clasificadores
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Las enfermedades pulmonares como el SARS-COV-2 y la neumonía plantean desafíos críticos para la salud pulmonar, requiriendo una identificación temprana para mejorar el diagnóstico y la atención médica. La presente investigación tiene como objetivo comparar algoritmos de aprendizaje automático en la clasificación de enfermedades pulmonares mediante imágenes radiográficas. Se recopilaron 23,000 imágenes de repositorios públicos distribuidas en conjuntos de entrenamiento y prueba. La evaluación de modelos, incluyendo ResNet50, CNN-LUNG, Regresión Logística, KNN y Árbol de Decisión, reveló una destacada precisión del 97.91%, 97.99%, 91.81%, 91.46% y 86.44% respectivamente. La implementación en Google Colab con Python y Visual Studio Code, utilizando técnicas de aumento de datos, mejoró la generalización. Los resultados, evaluados con métricas como precisión, exactitud, recall y F1-Score, subrayan el rendimiento superior de ResNet50 y CNNLUNG. Además, se destacó la eficacia de la CNN-LUNG en la identificación de casos de SARS-COV-2 y la necesidad de herramientas interactivas para la interpretación de resultados en entornos clínicos. Estos hallazgos ofrecen perspectivas esenciales para el desarrollo de herramientas diagnósticas y resaltan la eficacia sobresaliente de ResNet50 y CNN-LUNG en este contexto.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).