Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve

Descripción del Articulo

A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 1...

Descripción completa

Detalles Bibliográficos
Autor: Lucero Cieza, Robinson
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/9898
Enlace del recurso:https://hdl.handle.net/20.500.12802/9898
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Trastornos depresivos
Diagnóstico de depresión
Redes neuronales
Máquinas de soporte
Árbol de decisión
Naive bayes
https://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_08760732ef47381d47440fd37fc9cfdd
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/9898
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
title Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
spellingShingle Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
Lucero Cieza, Robinson
Aprendizaje automático
Trastornos depresivos
Diagnóstico de depresión
Redes neuronales
Máquinas de soporte
Árbol de decisión
Naive bayes
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
title_full Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
title_fullStr Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
title_full_unstemmed Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
title_sort Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
author Lucero Cieza, Robinson
author_facet Lucero Cieza, Robinson
author_role author
dc.contributor.advisor.fl_str_mv Atalaya Urrutia, Carlos William
dc.contributor.author.fl_str_mv Lucero Cieza, Robinson
dc.subject.es_PE.fl_str_mv Aprendizaje automático
Trastornos depresivos
Diagnóstico de depresión
Redes neuronales
Máquinas de soporte
Árbol de decisión
Naive bayes
topic Aprendizaje automático
Trastornos depresivos
Diagnóstico de depresión
Redes neuronales
Máquinas de soporte
Árbol de decisión
Naive bayes
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 18 años y 3.5% en niños de 6 a 10 años, en el Perú, el 80% de suicidios es a causa de la depresión, hay un millón setecientos mil personas que presentan cuadro depresivo, pero solo es atendido un 25% con atención especializada y el 65% simplemente no busca ayuda, estudios han demostrado que a nivel del ministerio de salud, el documento técnico llamado “auto escala de Zung”, es el más adecuado para la identificación de este problema analizando la medición de la depresión a través de información de aspectos cognitivos, afectivos y somáticos del paciente, dicho documento tiene una especificidad del 63% y sensibilidad del 97%, aprobando un acierto del 82% para discriminar la depresión. En esta investigación se construyó un método que inicia con la elaboración de un dataset de acuerdo a las variables de ingreso y salida así como el nivel de prioridad basados en el cuestionario de Zung, después se realizó la elección de las técnicas de aprendizaje de máquina, utilizadas para tratar casos de diagnóstico de depresión con mayor precisión, entre ellas lograron destacar, naive bayes, árbol de decisión, redes neuronales y maquinas vectores de soporte, acto seguido se implementó las técnicas mencionadas para ser comparadas y evaluadas según su desempeño, para el desarrollo de las mismas se utilizó la plataforma de google colaboratory con el lenguaje de programación python, según el método propuesto, desarrollado y evaluado se concluye que las redes neuronales tienen una precisión del 100% para el diagnóstico de depresión.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-21T17:06:02Z
dc.date.available.none.fl_str_mv 2022-09-21T17:06:02Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12802/9898
url https://hdl.handle.net/20.500.12802/9898
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Señor de Sipán
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
Repositorio Institucional USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
bitstream.url.fl_str_mv https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/1/Lucero%20Cieza%20Robinson.pdf
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/2/license_rdf
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/3/license.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/4/Lucero%20Cieza%20Robinson.pdf.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/5/Lucero%20Cieza%20Robinson.pdf.jpg
bitstream.checksum.fl_str_mv 2867df9e0d15f24bd610fa6b2e6f6251
3655808e5dd46167956d6870b0f43800
8a4605be74aa9ea9d79846c1fba20a33
8a30a0d3979060a158a2836db874cb7e
74b030f9d33866d36023391d078fa1bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1845884145941610496
spelling Atalaya Urrutia, Carlos WilliamLucero Cieza, Robinson2022-09-21T17:06:02Z2022-09-21T17:06:02Z2022https://hdl.handle.net/20.500.12802/9898A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 18 años y 3.5% en niños de 6 a 10 años, en el Perú, el 80% de suicidios es a causa de la depresión, hay un millón setecientos mil personas que presentan cuadro depresivo, pero solo es atendido un 25% con atención especializada y el 65% simplemente no busca ayuda, estudios han demostrado que a nivel del ministerio de salud, el documento técnico llamado “auto escala de Zung”, es el más adecuado para la identificación de este problema analizando la medición de la depresión a través de información de aspectos cognitivos, afectivos y somáticos del paciente, dicho documento tiene una especificidad del 63% y sensibilidad del 97%, aprobando un acierto del 82% para discriminar la depresión. En esta investigación se construyó un método que inicia con la elaboración de un dataset de acuerdo a las variables de ingreso y salida así como el nivel de prioridad basados en el cuestionario de Zung, después se realizó la elección de las técnicas de aprendizaje de máquina, utilizadas para tratar casos de diagnóstico de depresión con mayor precisión, entre ellas lograron destacar, naive bayes, árbol de decisión, redes neuronales y maquinas vectores de soporte, acto seguido se implementó las técnicas mencionadas para ser comparadas y evaluadas según su desempeño, para el desarrollo de las mismas se utilizó la plataforma de google colaboratory con el lenguaje de programación python, según el método propuesto, desarrollado y evaluado se concluye que las redes neuronales tienen una precisión del 100% para el diagnóstico de depresión.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSAprendizaje automáticoTrastornos depresivosDiagnóstico de depresiónRedes neuronalesMáquinas de soporteÁrbol de decisiónNaive bayeshttps://purl.org/pe-repo/ocde/ford#2.02.04Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leveinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas08167960https://orcid.org/0000-0002-2761-486846735950612076Vásquez Leyva, OliverSialer Rivera, María NoeliaDíaz Vidarte, Miguel Orlandohttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALLucero Cieza Robinson.pdfLucero Cieza Robinson.pdfapplication/pdf3531768https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/1/Lucero%20Cieza%20Robinson.pdf2867df9e0d15f24bd610fa6b2e6f6251MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTLucero Cieza Robinson.pdf.txtLucero Cieza Robinson.pdf.txtExtracted texttext/plain143659https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/4/Lucero%20Cieza%20Robinson.pdf.txt8a30a0d3979060a158a2836db874cb7eMD54THUMBNAILLucero Cieza Robinson.pdf.jpgLucero Cieza Robinson.pdf.jpgGenerated Thumbnailimage/jpeg9969https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/5/Lucero%20Cieza%20Robinson.pdf.jpg74b030f9d33866d36023391d078fa1bbMD5520.500.12802/9898oai:repositorio.uss.edu.pe:20.500.12802/98982022-09-22 03:01:17.404Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.937125
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).