Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve
Descripción del Articulo
A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 1...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Señor de Sipan |
| Repositorio: | USS-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/9898 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12802/9898 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje automático Trastornos depresivos Diagnóstico de depresión Redes neuronales Máquinas de soporte Árbol de decisión Naive bayes https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
USSS_08760732ef47381d47440fd37fc9cfdd |
|---|---|
| oai_identifier_str |
oai:repositorio.uss.edu.pe:20.500.12802/9898 |
| network_acronym_str |
USSS |
| network_name_str |
USS-Institucional |
| repository_id_str |
4829 |
| dc.title.es_PE.fl_str_mv |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| title |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| spellingShingle |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve Lucero Cieza, Robinson Aprendizaje automático Trastornos depresivos Diagnóstico de depresión Redes neuronales Máquinas de soporte Árbol de decisión Naive bayes https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| title_full |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| title_fullStr |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| title_full_unstemmed |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| title_sort |
Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leve |
| author |
Lucero Cieza, Robinson |
| author_facet |
Lucero Cieza, Robinson |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Atalaya Urrutia, Carlos William |
| dc.contributor.author.fl_str_mv |
Lucero Cieza, Robinson |
| dc.subject.es_PE.fl_str_mv |
Aprendizaje automático Trastornos depresivos Diagnóstico de depresión Redes neuronales Máquinas de soporte Árbol de decisión Naive bayes |
| topic |
Aprendizaje automático Trastornos depresivos Diagnóstico de depresión Redes neuronales Máquinas de soporte Árbol de decisión Naive bayes https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 18 años y 3.5% en niños de 6 a 10 años, en el Perú, el 80% de suicidios es a causa de la depresión, hay un millón setecientos mil personas que presentan cuadro depresivo, pero solo es atendido un 25% con atención especializada y el 65% simplemente no busca ayuda, estudios han demostrado que a nivel del ministerio de salud, el documento técnico llamado “auto escala de Zung”, es el más adecuado para la identificación de este problema analizando la medición de la depresión a través de información de aspectos cognitivos, afectivos y somáticos del paciente, dicho documento tiene una especificidad del 63% y sensibilidad del 97%, aprobando un acierto del 82% para discriminar la depresión. En esta investigación se construyó un método que inicia con la elaboración de un dataset de acuerdo a las variables de ingreso y salida así como el nivel de prioridad basados en el cuestionario de Zung, después se realizó la elección de las técnicas de aprendizaje de máquina, utilizadas para tratar casos de diagnóstico de depresión con mayor precisión, entre ellas lograron destacar, naive bayes, árbol de decisión, redes neuronales y maquinas vectores de soporte, acto seguido se implementó las técnicas mencionadas para ser comparadas y evaluadas según su desempeño, para el desarrollo de las mismas se utilizó la plataforma de google colaboratory con el lenguaje de programación python, según el método propuesto, desarrollado y evaluado se concluye que las redes neuronales tienen una precisión del 100% para el diagnóstico de depresión. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-21T17:06:02Z |
| dc.date.available.none.fl_str_mv |
2022-09-21T17:06:02Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12802/9898 |
| url |
https://hdl.handle.net/20.500.12802/9898 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Señor de Sipán |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - USS Repositorio Institucional USS |
| dc.source.none.fl_str_mv |
reponame:USS-Institucional instname:Universidad Señor de Sipan instacron:USS |
| instname_str |
Universidad Señor de Sipan |
| instacron_str |
USS |
| institution |
USS |
| reponame_str |
USS-Institucional |
| collection |
USS-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/1/Lucero%20Cieza%20Robinson.pdf https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/2/license_rdf https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/3/license.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/4/Lucero%20Cieza%20Robinson.pdf.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/5/Lucero%20Cieza%20Robinson.pdf.jpg |
| bitstream.checksum.fl_str_mv |
2867df9e0d15f24bd610fa6b2e6f6251 3655808e5dd46167956d6870b0f43800 8a4605be74aa9ea9d79846c1fba20a33 8a30a0d3979060a158a2836db874cb7e 74b030f9d33866d36023391d078fa1bb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Señor de Sipán |
| repository.mail.fl_str_mv |
repositorio@uss.edu.pe |
| _version_ |
1845884145941610496 |
| spelling |
Atalaya Urrutia, Carlos WilliamLucero Cieza, Robinson2022-09-21T17:06:02Z2022-09-21T17:06:02Z2022https://hdl.handle.net/20.500.12802/9898A nivel mundial la depresión lo padece unos 350 millones de seres humamos y el 5% es a nivel de Latinoamérica, es así que, cada veintidós minutos un ser humano intenta hacerse daño, las edades con mayores problemas depresivos son los adolescentes el cual representa el 10%, el 6% adultos mayores de 18 años y 3.5% en niños de 6 a 10 años, en el Perú, el 80% de suicidios es a causa de la depresión, hay un millón setecientos mil personas que presentan cuadro depresivo, pero solo es atendido un 25% con atención especializada y el 65% simplemente no busca ayuda, estudios han demostrado que a nivel del ministerio de salud, el documento técnico llamado “auto escala de Zung”, es el más adecuado para la identificación de este problema analizando la medición de la depresión a través de información de aspectos cognitivos, afectivos y somáticos del paciente, dicho documento tiene una especificidad del 63% y sensibilidad del 97%, aprobando un acierto del 82% para discriminar la depresión. En esta investigación se construyó un método que inicia con la elaboración de un dataset de acuerdo a las variables de ingreso y salida así como el nivel de prioridad basados en el cuestionario de Zung, después se realizó la elección de las técnicas de aprendizaje de máquina, utilizadas para tratar casos de diagnóstico de depresión con mayor precisión, entre ellas lograron destacar, naive bayes, árbol de decisión, redes neuronales y maquinas vectores de soporte, acto seguido se implementó las técnicas mencionadas para ser comparadas y evaluadas según su desempeño, para el desarrollo de las mismas se utilizó la plataforma de google colaboratory con el lenguaje de programación python, según el método propuesto, desarrollado y evaluado se concluye que las redes neuronales tienen una precisión del 100% para el diagnóstico de depresión.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSAprendizaje automáticoTrastornos depresivosDiagnóstico de depresiónRedes neuronalesMáquinas de soporteÁrbol de decisiónNaive bayeshttps://purl.org/pe-repo/ocde/ford#2.02.04Comparación de técnicas de clasificación de aprendizaje de máquina en el diagnóstico del trastorno depresivo leveinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas08167960https://orcid.org/0000-0002-2761-486846735950612076Vásquez Leyva, OliverSialer Rivera, María NoeliaDíaz Vidarte, Miguel Orlandohttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALLucero Cieza Robinson.pdfLucero Cieza Robinson.pdfapplication/pdf3531768https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/1/Lucero%20Cieza%20Robinson.pdf2867df9e0d15f24bd610fa6b2e6f6251MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTLucero Cieza Robinson.pdf.txtLucero Cieza Robinson.pdf.txtExtracted texttext/plain143659https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/4/Lucero%20Cieza%20Robinson.pdf.txt8a30a0d3979060a158a2836db874cb7eMD54THUMBNAILLucero Cieza Robinson.pdf.jpgLucero Cieza Robinson.pdf.jpgGenerated Thumbnailimage/jpeg9969https://repositorio.uss.edu.pe/bitstream/20.500.12802/9898/5/Lucero%20Cieza%20Robinson.pdf.jpg74b030f9d33866d36023391d078fa1bbMD5520.500.12802/9898oai:repositorio.uss.edu.pe:20.500.12802/98982022-09-22 03:01:17.404Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.937125 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).