Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments
Descripción del Articulo
Objectives: Traditional stated-preference models with fixed effects assume that individuals behave similarly. However, empirical evidence has shown that individuals’ preferences are often diverse. Hierarchical Bayesian models that include random effects provide individual-specific utilities to accou...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad San Ignacio de Loyola |
| Repositorio: | USIL-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.usil.edu.pe:20.500.14005/3966 |
| Enlace del recurso: | https://hdl.handle.net/20.500.14005/3966 https://doi.org/10.1016/j.jval.2017.08.2122 |
| Nivel de acceso: | acceso embargado |
| Materia: | Oncología Médica Cáncer Statistical inference |
| id |
USIL_c4b4e95131d50e281bba40f9a8977463 |
|---|---|
| oai_identifier_str |
oai:repositorio.usil.edu.pe:20.500.14005/3966 |
| network_acronym_str |
USIL |
| network_name_str |
USIL-Institucional |
| repository_id_str |
3128 |
| spelling |
9209dd9cc0c-cc52-42f7-8052-f3880fd98e55-1f0453524-6290-4c40-853a-63d1d76642fb-1Shi, A.Talledo Flores, Oscar Hernán2018-11-21T22:31:04Z2018-11-21T22:31:04Z2017-11Objectives: Traditional stated-preference models with fixed effects assume that individuals behave similarly. However, empirical evidence has shown that individuals’ preferences are often diverse. Hierarchical Bayesian models that include random effects provide individual-specific utilities to account for heterogeneity. This research studies oncologists’ choices about various pharmaceutical therapies for patients who have metastatic breast cancer. Methods: In this discrete choice experiment conducted in Lima, Peru, each of 113 oncologists was presented with 11 choice tasks (each consisting of four scenarios of therapies plus the NONE option) and asked to pick the best choice. The attributes included Treatment Scheme, Patient Recovery Status, Treatment Length, Cost, and Risk Factors. Hierarchical Bayesian methods were used in this multinomial logit conjoint analysis to account for heterogeneity in preferences.Revisado por paresapplication/pdfShi, A., & Talledo Flores, O. H. (2017). Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments. Value in Health, 20(9).10.1016/j.jval.2017.08.21221098-30151524-4733Value in Healthhttps://hdl.handle.net/20.500.14005/3966https://doi.org/10.1016/j.jval.2017.08.2122000413599902655engElsevier Science Inc.Value in Healthinfo:eu-repo/semantics/embargoedAccessUniversidad San Ignacio de LoyolaRepositorio Institucional - USILreponame:USIL-Institucionalinstname:Universidad San Ignacio de Loyolainstacron:USILOncología MédicaCáncerStatistical inferenceHierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatmentsinfo:eu-repo/semantics/articlePublication20.500.14005/3966oai:repositorio.usil.edu.pe:20.500.14005/39662023-04-17 11:01:05.251https://repositorio.usil.edu.peRepositorio institucional de la Universidad San Ignacio de Loyolarepositorio.institucional@usil.edu.pe |
| dc.title.es_ES.fl_str_mv |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| title |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| spellingShingle |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments Shi, A. Oncología Médica Cáncer Statistical inference |
| title_short |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| title_full |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| title_fullStr |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| title_full_unstemmed |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| title_sort |
Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments |
| author |
Shi, A. |
| author_facet |
Shi, A. Talledo Flores, Oscar Hernán |
| author_role |
author |
| author2 |
Talledo Flores, Oscar Hernán |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Shi, A. Talledo Flores, Oscar Hernán |
| dc.subject.es_ES.fl_str_mv |
Oncología Médica Cáncer |
| topic |
Oncología Médica Cáncer Statistical inference |
| dc.subject.en.fl_str_mv |
Statistical inference |
| description |
Objectives: Traditional stated-preference models with fixed effects assume that individuals behave similarly. However, empirical evidence has shown that individuals’ preferences are often diverse. Hierarchical Bayesian models that include random effects provide individual-specific utilities to account for heterogeneity. This research studies oncologists’ choices about various pharmaceutical therapies for patients who have metastatic breast cancer. Methods: In this discrete choice experiment conducted in Lima, Peru, each of 113 oncologists was presented with 11 choice tasks (each consisting of four scenarios of therapies plus the NONE option) and asked to pick the best choice. The attributes included Treatment Scheme, Patient Recovery Status, Treatment Length, Cost, and Risk Factors. Hierarchical Bayesian methods were used in this multinomial logit conjoint analysis to account for heterogeneity in preferences. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2018-11-21T22:31:04Z |
| dc.date.available.none.fl_str_mv |
2018-11-21T22:31:04Z |
| dc.date.issued.fl_str_mv |
2017-11 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.en.fl_str_mv |
Shi, A., & Talledo Flores, O. H. (2017). Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments. Value in Health, 20(9). |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.jval.2017.08.2122 |
| dc.identifier.issn.none.fl_str_mv |
1098-3015 1524-4733 |
| dc.identifier.journal.es_ES.fl_str_mv |
Value in Health |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.14005/3966 https://doi.org/10.1016/j.jval.2017.08.2122 |
| dc.identifier.wos.none.fl_str_mv |
000413599902655 |
| identifier_str_mv |
Shi, A., & Talledo Flores, O. H. (2017). Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments. Value in Health, 20(9). 10.1016/j.jval.2017.08.2122 1098-3015 1524-4733 Value in Health 000413599902655 |
| url |
https://hdl.handle.net/20.500.14005/3966 https://doi.org/10.1016/j.jval.2017.08.2122 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.en.fl_str_mv |
Value in Health |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.en.fl_str_mv |
Elsevier Science Inc. |
| dc.source.es_ES.fl_str_mv |
Universidad San Ignacio de Loyola Repositorio Institucional - USIL |
| dc.source.none.fl_str_mv |
reponame:USIL-Institucional instname:Universidad San Ignacio de Loyola instacron:USIL |
| instname_str |
Universidad San Ignacio de Loyola |
| instacron_str |
USIL |
| institution |
USIL |
| reponame_str |
USIL-Institucional |
| collection |
USIL-Institucional |
| repository.name.fl_str_mv |
Repositorio institucional de la Universidad San Ignacio de Loyola |
| repository.mail.fl_str_mv |
repositorio.institucional@usil.edu.pe |
| _version_ |
1846976851232161792 |
| score |
13.140231 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).