Desarrollo de un sistema de diagnóstico en la detección temprana de cataratas utilizando redes neuronales convolucionales

Descripción del Articulo

En esta tesis se presenta el desarrollo de un sistema de diagnóstico para la detección temprana de cataratas utilizando redes neuronales convolucionales (CNNs). Las cataratas son la principal causa de discapacidad visual a nivel mundial, y su detección temprana es crucial para prevenir la progresión...

Descripción completa

Detalles Bibliográficos
Autores: Infante Cueva Wilder Pablo, Cruzado Benites Marco Salvador, Infante Cueva, Wilder Pablo
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Privada Antenor Orrego
Repositorio:UPAO-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upao.edu.pe:20.500.12759/42091
Enlace del recurso:https://hdl.handle.net/20.500.12759/42091
Nivel de acceso:acceso abierto
Materia:Sistema de Diagnostico
Redes Neuronales Convolucionales
https://purl.org/pe-repo/ocde/ford#2.11.00
Descripción
Sumario:En esta tesis se presenta el desarrollo de un sistema de diagnóstico para la detección temprana de cataratas utilizando redes neuronales convolucionales (CNNs). Las cataratas son la principal causa de discapacidad visual a nivel mundial, y su detección temprana es crucial para prevenir la progresión de la enfermedad y mejorar los resultados visuales de los pacientes. El sistema propuesto tiene como objetivo proporcionar una herramienta automatizada y precisa para identificar cataratas en imágenes oftalmológicas, facilitando así el acceso a la atención oftalmológica y mejorando la eficiencia del diagnóstico. La metodología empleada incluye la recolección de un conjunto de datos de imágenes oftalmológicas, el diseño de una arquitectura de CNN optimizada para la detección de cataratas, y el entrenamiento del modelo utilizando técnicas de procesamiento de imágenes y aprendizaje profundo. El sistema se evaluó mediante métricas de rendimiento como precisión, sensibilidad y especificidad, demostrando una alta capacidad para distinguir entre imágenes con y sin cataratas. Los resultados obtenidos muestran que el sistema desarrollado es capaz de detectar cataratas con un alto grado de precisión, lo que sugiere su viabilidad como herramienta de apoyo en entornos clínicos. Además, el uso de este sistema puede reducir la carga de trabajo de los oftalmólogos, permitir diagnósticos más rápidos y precisos, y aumentar la accesibilidad a exámenes oftalmológicos en áreas con recursos limitados. En conclusión, el desarrollo de este sistema de diagnóstico basado en CNNs representa un avance significativo en la aplicación de la inteligencia artificial en la medicina oftalmológica, ofreciendo una solución prometedora para mejorar la detección temprana de cataratas y, en última instancia, contribuir a la reducción de la ceguera evitable a nivel mundial
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).