Optimización en espacios de Banach y aplicaciones
Descripción del Articulo
En este trabajo se estudia el problema de optimización mín xES f(x) donde S es un subconjunto convexo en un espacio normado X f : X (flecha funcional) R. Asimismo, se presenta una extensión del teorema de Kuhn-Tucker que resuelve el problema de minimización sobre el conjunto S = {x E S/g(x) E -C don...
Autor: | |
---|---|
Formato: | tesis doctoral |
Fecha de Publicación: | 2015 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/4481 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/4481 |
Nivel de acceso: | acceso abierto |
Materia: | Espacios de Banach Funciones Convexas Teorema de Kuhn Tucker Generalizado Subgradiente https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | En este trabajo se estudia el problema de optimización mín xES f(x) donde S es un subconjunto convexo en un espacio normado X f : X (flecha funcional) R. Asimismo, se presenta una extensión del teorema de Kuhn-Tucker que resuelve el problema de minimización sobre el conjunto S = {x E S/g(x) E -C donde C ∧ h(x) = 0Z}es un cono de orden y h, g dos funcionales Fréchet diferenciables. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).