Fundamentos de topología algebraica: el teorema de Seifert Van Kampen

Descripción del Articulo

En este trabajo de tesis se prueba el teorema de Seifert Van Kampen, que es un teorema fundamental de la topología algebraica. Este teorema presenta un método general para calcular grupos fundamentales de espacios topológicos. Se considera un espacio topológico X, que es la unión de los conjuntos ab...

Descripción completa

Detalles Bibliográficos
Autor: Mosquera Meza, Suzanne Mauricy
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/17268
Enlace del recurso:https://hdl.handle.net/20.500.12672/17268
Nivel de acceso:acceso abierto
Materia:Topología algebraica
Grupos de homotopía
Espacios topológicos
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:En este trabajo de tesis se prueba el teorema de Seifert Van Kampen, que es un teorema fundamental de la topología algebraica. Este teorema presenta un método general para calcular grupos fundamentales de espacios topológicos. Se considera un espacio topológico X, que es la unión de los conjuntos abiertos conexos por caminos A, B ⊂ X; cuya intersección A ∩ B 6= ∅ también es conexa por caminos y además consideraremos un punto base x0 ∈ A ∩ B. Entonces se puede calcular el grupo fundamental de X a partir de los grupos fundamentales de A y B. Además se caracteriza al grupo fundamental de X y se da unas aplicaciones muy útiles como el grupo fundamental del toro y el grupo fundamental del plano proyectivo real.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).