Caracterización de los módulos planos por ideales finitamente generados

Descripción del Articulo

En este trabajo caracterizaremos los módulos planos por ideales finitamente generados y por ecuaciones lineales. Para ello hemos dividido el trabajo en 4 capítulos: En el capítulo 1 utilizaremos el lenguaje de categorías y funtores para presentar los módulos proyectivos y planos como aquellos módulo...

Descripción completa

Detalles Bibliográficos
Autor: Quiróz García, Francisco
Formato: tesis de grado
Fecha de Publicación:2007
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/13437
Enlace del recurso:https://hdl.handle.net/20.500.12672/13437
Nivel de acceso:acceso abierto
Materia:Módulos (Algebra)
Teoría de la torsión (Algebra)
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En este trabajo caracterizaremos los módulos planos por ideales finitamente generados y por ecuaciones lineales. Para ello hemos dividido el trabajo en 4 capítulos: En el capítulo 1 utilizaremos el lenguaje de categorías y funtores para presentar los módulos proyectivos y planos como aquellos módulos M que hacen exactos a los funtores HomR(M,-) y M⊗R - respectivamente. En el capítulo 2 estudiaremos las propiedades básicas de los módulos planos, así como algunos ejemplos. Los funtores de torsión serán presentados en el capítulo 3. En el capítulo 4, como aplicación de los funtores de torsión, probaremos los dos teoremas principales de nuestra monografía. El primer teorema mostrará que M es plano si y solamente si el funtor de torsión 1 – dimensional TorR1 (M, R/1) = 0 para todo ideal finitamente generado I. Y el segundo teorema caracterizará los módulos planos usando ecuaciones lineales. Finalmente probaremos que si R es un anillo local y M es un R- módulo finitamente generado, entonces M es plano si y solamente si M es proyectivo si y solamente si M es libre.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).