Existencia, unicidad y regularidad p-maximal de la solución de un modelo parabólico semilineal

Descripción del Articulo

Estudia tres aspectos relacionados a una ecuación parabólica semilineal: existencia, unicidad y regularidad de sus soluciones, en espacios de Sobolev adecuados. Empieza estudiando el caso lineal. En este caso, la herramienta principal que emplea es el método de Faedo - Galerkin. Para el caso semilin...

Descripción completa

Detalles Bibliográficos
Autor: Potenciano Machado, Leyter
Formato: tesis de grado
Fecha de Publicación:2012
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/6591
Enlace del recurso:https://hdl.handle.net/20.500.12672/6591
Nivel de acceso:acceso abierto
Materia:Espacios de Sobolev
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:Estudia tres aspectos relacionados a una ecuación parabólica semilineal: existencia, unicidad y regularidad de sus soluciones, en espacios de Sobolev adecuados. Empieza estudiando el caso lineal. En este caso, la herramienta principal que emplea es el método de Faedo - Galerkin. Para el caso semilineal usa un argumento de punto fijo de Banach. Finalmente muestra algunos ejemplos usando los resultados obtenidos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).