Teoremas de Schauder y Borsuk para puntos fijos y aplicaciones

Descripción del Articulo

Muestra la teoría de punto fijo basado en las consideraciones de orden y completitud, resaltando la importancia de los teoremas de Knaster-Tarski y Bishop-Phelps. De igual manera la teoría de triangulación y triangulación simétrica de Sn, necesarias para demostrar las equivalencias de los teoremas d...

Descripción completa

Detalles Bibliográficos
Autor: Alejandro Aguilar, Miguel Angel
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/10473
Enlace del recurso:https://hdl.handle.net/20.500.12672/10473
Nivel de acceso:acceso abierto
Materia:Teoría del punto fijo
Espacios algebraicos
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Muestra la teoría de punto fijo basado en las consideraciones de orden y completitud, resaltando la importancia de los teoremas de Knaster-Tarski y Bishop-Phelps. De igual manera la teoría de triangulación y triangulación simétrica de Sn, necesarias para demostrar las equivalencias de los teoremas de Lusternik-Schnirelmann-Borsuk, antipodal de Borsuk y Borsuk-Ulam, como consecuencia se demuestra el teorema de Borsuk y las equivalencias del teorema de punto fijo de Brouwer con los teoremas de Bohl y la retracción de Borsuk. Para finalizar, se demuestra el teorema de punto fijo de Schauder y Borsuk para cualquier espacio lineal normado que son la extensión de los teoremas de Brouwer y Borsuk respectivamente, además se presenta algunas aplicaciones como son la demostración del teorema de Peano y de Krein-Krasnosel’skñ-Milman.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).