Determination of the Compressive Strength of Concrete Using Artificial Neural Network

Descripción del Articulo

The objective of the work is to estimate the compressive strength of concrete by means of the application of Artificial Neural Networks (ANNs). A database is created with design variables of mixtures of 175, 210, and 280 kgf/cm², which are collected from certified laboratories of soil mechanics and...

Descripción completa

Detalles Bibliográficos
Autor: Quiñones Huatangari, Lenin
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/643
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/643
https://doi.org/10.46604/ijeti.2021.7479
Nivel de acceso:acceso abierto
Materia:Concrete, ANN, artificial neural network, compressive strength
https://purl.org/pe-repo/ocde/ford#2.01.00
id UNJA_ce53829578855dc6da36edd256db82db
oai_identifier_str oai:repositorio.unj.edu.pe:UNJ/643
network_acronym_str UNJA
network_name_str UNJ-Institucional
repository_id_str 4820
dc.title.es_ES.fl_str_mv Determination of the Compressive Strength of Concrete Using Artificial Neural Network
title Determination of the Compressive Strength of Concrete Using Artificial Neural Network
spellingShingle Determination of the Compressive Strength of Concrete Using Artificial Neural Network
Quiñones Huatangari, Lenin
Concrete, ANN, artificial neural network, compressive strength
https://purl.org/pe-repo/ocde/ford#2.01.00
title_short Determination of the Compressive Strength of Concrete Using Artificial Neural Network
title_full Determination of the Compressive Strength of Concrete Using Artificial Neural Network
title_fullStr Determination of the Compressive Strength of Concrete Using Artificial Neural Network
title_full_unstemmed Determination of the Compressive Strength of Concrete Using Artificial Neural Network
title_sort Determination of the Compressive Strength of Concrete Using Artificial Neural Network
author Quiñones Huatangari, Lenin
author_facet Quiñones Huatangari, Lenin
author_role author
dc.contributor.author.fl_str_mv Quiñones Huatangari, Lenin
dc.subject.es_ES.fl_str_mv Concrete, ANN, artificial neural network, compressive strength
topic Concrete, ANN, artificial neural network, compressive strength
https://purl.org/pe-repo/ocde/ford#2.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.01.00
description The objective of the work is to estimate the compressive strength of concrete by means of the application of Artificial Neural Networks (ANNs). A database is created with design variables of mixtures of 175, 210, and 280 kgf/cm², which are collected from certified laboratories of soil mechanics and concrete of the city of Jaen. In addition, Weka software is used for the selection of the variables and Matlab software is used for the learning, training, and validation stages of ANNs. Five ANNs are proposed to estimate the compressive strength of concrete at 7th, 14th, and 28th day. The results show that the networks obtain the average error of 4.69% and are composed of an input layer with eleven neurons, two hidden layers with nine neurons each, and the compressive strength of concrete as the output. This method is effective and valid for estimating the compressive strength of concrete as a non-destructive alternative for quality control in the construction industry.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-01T00:26:50Z
dc.date.available.none.fl_str_mv 2024-04-01T00:26:50Z
dc.date.issued.fl_str_mv 2024-03-31
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://repositorio.unj.edu.pe/handle/UNJ/643
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.46604/ijeti.2021.7479
url http://repositorio.unj.edu.pe/handle/UNJ/643
https://doi.org/10.46604/ijeti.2021.7479
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.es_ES.fl_str_mv Determination of the Compressive Strength of Concrete Using Artificial Neural Network
dc.relation.ispartof.es_ES.fl_str_mv International Journal of Engineering and Technology Innovation
International Journal of Engineering and Technology Innovation
dc.relation.uri.es_ES.fl_str_mv https://doi.org/10.46604/ijeti.2021.7479
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Universidad Nacional de Jaén
dc.publisher.country.es_ES.fl_str_mv TW
dc.source.es_ES.fl_str_mv Universidad Nacional de Jaén||Repositorio Institucional – UNJ
dc.source.none.fl_str_mv reponame:UNJ-Institucional
instname:Universidad Nacional de Jaén
instacron:UNJ
instname_str Universidad Nacional de Jaén
instacron_str UNJ
institution UNJ
reponame_str UNJ-Institucional
collection UNJ-Institucional
bitstream.url.fl_str_mv http://repositorio.unj.edu.pe/bitstream/UNJ/643/1/ANEXO%2008-5.pdf
http://repositorio.unj.edu.pe/bitstream/UNJ/643/2/license.txt
bitstream.checksum.fl_str_mv bd4142374dc1fa5d99f5d3b66979e8cd
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio UNJ
repository.mail.fl_str_mv repositorio@unj.edu.pe
_version_ 1846062702264320000
spelling Quiñones Huatangari, Lenin2024-04-01T00:26:50Z2024-04-01T00:26:50Z2024-03-31http://repositorio.unj.edu.pe/handle/UNJ/643https://doi.org/10.46604/ijeti.2021.7479The objective of the work is to estimate the compressive strength of concrete by means of the application of Artificial Neural Networks (ANNs). A database is created with design variables of mixtures of 175, 210, and 280 kgf/cm², which are collected from certified laboratories of soil mechanics and concrete of the city of Jaen. In addition, Weka software is used for the selection of the variables and Matlab software is used for the learning, training, and validation stages of ANNs. Five ANNs are proposed to estimate the compressive strength of concrete at 7th, 14th, and 28th day. The results show that the networks obtain the average error of 4.69% and are composed of an input layer with eleven neurons, two hidden layers with nine neurons each, and the compressive strength of concrete as the output. This method is effective and valid for estimating the compressive strength of concrete as a non-destructive alternative for quality control in the construction industry.application/pdfengUniversidad Nacional de JaénTWDetermination of the Compressive Strength of Concrete Using Artificial Neural NetworkInternational Journal of Engineering and Technology InnovationInternational Journal of Engineering and Technology Innovationhttps://doi.org/10.46604/ijeti.2021.7479info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Universidad Nacional de Jaén||Repositorio Institucional – UNJreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJConcrete, ANN, artificial neural network, compressive strengthhttps://purl.org/pe-repo/ocde/ford#2.01.00Determination of the Compressive Strength of Concrete Using Artificial Neural Networkinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion42821048ORIGINALANEXO 08-5.pdfANEXO 08-5.pdfapplication/pdf109588http://repositorio.unj.edu.pe/bitstream/UNJ/643/1/ANEXO%2008-5.pdfbd4142374dc1fa5d99f5d3b66979e8cdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/643/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52UNJ/643oai:repositorio.unj.edu.pe:UNJ/6432024-08-19 17:57:39.923Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.376803
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).