Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models

Descripción del Articulo

Non-destructive methods that accurately estimate leaf area (LA) and leaf weight (LW) are simple and inexpensive, and represent powerful tools in the development of physiological and agronomic research. The objective of this research is to generate mathematical models for estimating the LA and LW of...

Descripción completa

Detalles Bibliográficos
Autores: Quiñones Huatangari, Lenin, Huaccha Castillo,Annick Estefany
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/639
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/639
https://doi.org/10.1080/21580103.2023.2170473
Nivel de acceso:acceso abierto
Materia:Cinchona tree leaf dimensions ImagJ software Leaf morphology mathematical models
https://purl.org/pe-repo/ocde/ford#1.01.02
id UNJA_6cb096461963912acf246999aee27fcb
oai_identifier_str oai:repositorio.unj.edu.pe:UNJ/639
network_acronym_str UNJA
network_name_str UNJ-Institucional
repository_id_str 4820
dc.title.es_ES.fl_str_mv Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
title Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
spellingShingle Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
Quiñones Huatangari, Lenin
Cinchona tree leaf dimensions ImagJ software Leaf morphology mathematical models
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
title_full Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
title_fullStr Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
title_full_unstemmed Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
title_sort Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
author Quiñones Huatangari, Lenin
author_facet Quiñones Huatangari, Lenin
Huaccha Castillo,Annick Estefany
author_role author
author2 Huaccha Castillo,Annick Estefany
author2_role author
dc.contributor.author.fl_str_mv Quiñones Huatangari, Lenin
Huaccha Castillo,Annick Estefany
dc.subject.es_ES.fl_str_mv Cinchona tree leaf dimensions ImagJ software Leaf morphology mathematical models
topic Cinchona tree leaf dimensions ImagJ software Leaf morphology mathematical models
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description Non-destructive methods that accurately estimate leaf area (LA) and leaf weight (LW) are simple and inexpensive, and represent powerful tools in the development of physiological and agronomic research. The objective of this research is to generate mathematical models for estimating the LA and LW of Cinchona officinalis leaves. A total of 220 leaves were collected from C. officinalis plants 10 months after transplantation. Each leaf was measured for length, width, weight, and leaf area. Data for 80% of leaves were used to form the training set, and data for the remaining 20% were used as the validation set. The training set was used for model fit and choice, whereas the validation set al.lowed assessment of the of the model’s predictive ability. The LA and LW were modeled using seven linear regression models based on the length (L) and width (Wi) of leaves. In addition, the models were assessed based on calculation of the following statistics: goodness of fit (R2), root mean squared error (RMSE), Akaike’s information criterion (AIC), and the deviation between the regression line of the observed versus expected values and the reference line, determined by the area between these lines (ABL). For LA estimation, the model LA = 11.521(Wi) − 21.422 (R2 = 0.96, RMSE = 28.16, AIC = 3.48, and ABL = 140.34) was chosen, while for LW determination, LW = 0.2419(Wi) − 0.4936 (R2 = 0.93, RMSE = 0.56, AIC = 37.36, and ABL = 0.03) was selected. Finally, the LA and LW of C. officinalis could be estimated through linear regression involving leaf width, proving to be a simple and accurate tool.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-03-31T23:57:31Z
dc.date.available.none.fl_str_mv 2024-03-31T23:57:31Z
dc.date.issued.fl_str_mv 2024-03-31
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://repositorio.unj.edu.pe/handle/UNJ/639
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.1080/21580103.2023.2170473
url http://repositorio.unj.edu.pe/handle/UNJ/639
https://doi.org/10.1080/21580103.2023.2170473
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.es_ES.fl_str_mv Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
dc.relation.ispartof.es_ES.fl_str_mv Food Science and Technology
Food Science and Technology
dc.relation.uri.es_ES.fl_str_mv https://doi.org/10.1080/21580103.2023.2170473
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Universidad Nacional de Jaén
dc.publisher.country.es_ES.fl_str_mv GB
dc.source.es_ES.fl_str_mv Universidad Nacional de Jaén||Repositorio Institucional – UNJ
dc.source.none.fl_str_mv reponame:UNJ-Institucional
instname:Universidad Nacional de Jaén
instacron:UNJ
instname_str Universidad Nacional de Jaén
instacron_str UNJ
institution UNJ
reponame_str UNJ-Institucional
collection UNJ-Institucional
bitstream.url.fl_str_mv http://repositorio.unj.edu.pe/bitstream/UNJ/639/1/ANEXO%2008-1.pdf
http://repositorio.unj.edu.pe/bitstream/UNJ/639/2/license.txt
bitstream.checksum.fl_str_mv d5a62c57f856409f40cbac01d2055efc
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio UNJ
repository.mail.fl_str_mv repositorio@unj.edu.pe
_version_ 1846696865368637440
spelling Quiñones Huatangari, LeninHuaccha Castillo,Annick Estefany2024-03-31T23:57:31Z2024-03-31T23:57:31Z2024-03-31http://repositorio.unj.edu.pe/handle/UNJ/639https://doi.org/10.1080/21580103.2023.2170473Non-destructive methods that accurately estimate leaf area (LA) and leaf weight (LW) are simple and inexpensive, and represent powerful tools in the development of physiological and agronomic research. The objective of this research is to generate mathematical models for estimating the LA and LW of Cinchona officinalis leaves. A total of 220 leaves were collected from C. officinalis plants 10 months after transplantation. Each leaf was measured for length, width, weight, and leaf area. Data for 80% of leaves were used to form the training set, and data for the remaining 20% were used as the validation set. The training set was used for model fit and choice, whereas the validation set al.lowed assessment of the of the model’s predictive ability. The LA and LW were modeled using seven linear regression models based on the length (L) and width (Wi) of leaves. In addition, the models were assessed based on calculation of the following statistics: goodness of fit (R2), root mean squared error (RMSE), Akaike’s information criterion (AIC), and the deviation between the regression line of the observed versus expected values and the reference line, determined by the area between these lines (ABL). For LA estimation, the model LA = 11.521(Wi) − 21.422 (R2 = 0.96, RMSE = 28.16, AIC = 3.48, and ABL = 140.34) was chosen, while for LW determination, LW = 0.2419(Wi) − 0.4936 (R2 = 0.93, RMSE = 0.56, AIC = 37.36, and ABL = 0.03) was selected. Finally, the LA and LW of C. officinalis could be estimated through linear regression involving leaf width, proving to be a simple and accurate tool.application/pdfengUniversidad Nacional de JaénGBNon-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear modelsFood Science and TechnologyFood Science and Technologyhttps://doi.org/10.1080/21580103.2023.2170473info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de Jaén||Repositorio Institucional – UNJreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJCinchona tree leaf dimensions ImagJ software Leaf morphology mathematical modelshttps://purl.org/pe-repo/ocde/ford#1.01.02Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion4282104872552959ORIGINALANEXO 08-1.pdfANEXO 08-1.pdfapplication/pdf109822http://repositorio.unj.edu.pe/bitstream/UNJ/639/1/ANEXO%2008-1.pdfd5a62c57f856409f40cbac01d2055efcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/639/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52UNJ/639oai:repositorio.unj.edu.pe:UNJ/6392024-09-20 17:50:23.298Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).