Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review

Descripción del Articulo

Hemileia vastatrix is a fungus that causes coffee rust disease and, depending on the level of severity, reduces the photosynthetic capacity of the plant and of new shoots, leading to low coffee yields and even death; its symptoms are visible on the leaf. Systems based on computer algorithms have bee...

Descripción completa

Detalles Bibliográficos
Autores: Ocaña Zúñiga,Candy Lisbeth, Quiñones Huatangari,Lenin, Huaccha Castillo,Annick Estefany, Milla Pino,Manuel Emilio
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/741
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/741
https://doi.org/10.3844/ojbsci.2022.157.164
Nivel de acceso:acceso abierto
Materia:plant product
simulation model
statistical inference
hemileia vastatrix
https://purl.org/pe-repo/ocde/ford#4.01.02
id UNJA_548ec578e1bbb672c0b4d6a291b07db3
oai_identifier_str oai:repositorio.unj.edu.pe:UNJ/741
network_acronym_str UNJA
network_name_str UNJ-Institucional
repository_id_str 4820
dc.title.es_ES.fl_str_mv Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
title Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
spellingShingle Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
Ocaña Zúñiga,Candy Lisbeth
plant product
simulation model
statistical inference
hemileia vastatrix
https://purl.org/pe-repo/ocde/ford#4.01.02
title_short Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
title_full Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
title_fullStr Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
title_full_unstemmed Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
title_sort Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Review
author Ocaña Zúñiga,Candy Lisbeth
author_facet Ocaña Zúñiga,Candy Lisbeth
Quiñones Huatangari,Lenin
Huaccha Castillo,Annick Estefany
Milla Pino,Manuel Emilio
author_role author
author2 Quiñones Huatangari,Lenin
Huaccha Castillo,Annick Estefany
Milla Pino,Manuel Emilio
author2_role author
author
author
dc.contributor.author.fl_str_mv Ocaña Zúñiga,Candy Lisbeth
Quiñones Huatangari,Lenin
Huaccha Castillo,Annick Estefany
Milla Pino,Manuel Emilio
dc.subject.es_ES.fl_str_mv plant product
simulation model
statistical inference
hemileia vastatrix
topic plant product
simulation model
statistical inference
hemileia vastatrix
https://purl.org/pe-repo/ocde/ford#4.01.02
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.02
description Hemileia vastatrix is a fungus that causes coffee rust disease and, depending on the level of severity, reduces the photosynthetic capacity of the plant and of new shoots, leading to low coffee yields and even death; its symptoms are visible on the leaf. Systems based on computer algorithms have been developed to predict diseases and pests in coffee. The objective of the manuscript was to analyse the detection of rust occurrence in coffee plantations, through field determinations of climatological, agronomic and crop management variables using data mining algorithms. A systematic review of studies published from 2001 to 2021 was carried out in the Scopus, Ebsco Host and Scielo databases, considering as an inclusion criterion the works that used experimental design in data collection. The studies included in this review were 22, 64% of which came from the top two coffee-roducing countries in Latin America (Brazil and Colombia); the analysis of these studies revealed that the input variables were climatic, soil fertility properties, management and physical properties of the crops. In addition, they used supervised (decision tree, artificial neural networks, multiple linear regression, among others) and unsupervised (clustering) algorithms, with the support of experts in the study of the fungus and used statistics such as coefficient of determination, root mean square error, among others, to validate the proposals. Overall, this systematic review provides evidence of the effectiveness of data mining algorithms implemented to detect the occurrence of rust in coffee plantation
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-10-09T04:31:24Z
dc.date.available.none.fl_str_mv 2024-10-09T04:31:24Z
dc.date.issued.fl_str_mv 2022-09-03
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://repositorio.unj.edu.pe/handle/UNJ/741
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.3844/ojbsci.2022.157.164
url http://repositorio.unj.edu.pe/handle/UNJ/741
https://doi.org/10.3844/ojbsci.2022.157.164
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv OnLine Journal of Biological Sciences
OnLine Journal of Biological Sciences
dc.relation.uri.es_ES.fl_str_mv https://doi.org/10.3844/ojbsci.2022.157.164
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv OnLine Journal of Biological Sciences
dc.publisher.country.es_ES.fl_str_mv US
dc.source.es_ES.fl_str_mv Universidad Nacional de Jaén||Repositorio Institucional - UNJ
dc.source.none.fl_str_mv reponame:UNJ-Institucional
instname:Universidad Nacional de Jaén
instacron:UNJ
instname_str Universidad Nacional de Jaén
instacron_str UNJ
institution UNJ
reponame_str UNJ-Institucional
collection UNJ-Institucional
bitstream.url.fl_str_mv http://repositorio.unj.edu.pe/bitstream/UNJ/741/1/Declaraci%c3%b3n%20Jurada%20de%20Acceso%20a%20la%20Informaci%c3%b3n_7-Roya.pdf
http://repositorio.unj.edu.pe/bitstream/UNJ/741/2/license.txt
bitstream.checksum.fl_str_mv 6799afafe9d970b413924c3da910c4f5
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio UNJ
repository.mail.fl_str_mv repositorio@unj.edu.pe
_version_ 1846062700582404096
spelling Ocaña Zúñiga,Candy LisbethQuiñones Huatangari,LeninHuaccha Castillo,Annick EstefanyMilla Pino,Manuel Emilio2024-10-09T04:31:24Z2024-10-09T04:31:24Z2022-09-03http://repositorio.unj.edu.pe/handle/UNJ/741https://doi.org/10.3844/ojbsci.2022.157.164Hemileia vastatrix is a fungus that causes coffee rust disease and, depending on the level of severity, reduces the photosynthetic capacity of the plant and of new shoots, leading to low coffee yields and even death; its symptoms are visible on the leaf. Systems based on computer algorithms have been developed to predict diseases and pests in coffee. The objective of the manuscript was to analyse the detection of rust occurrence in coffee plantations, through field determinations of climatological, agronomic and crop management variables using data mining algorithms. A systematic review of studies published from 2001 to 2021 was carried out in the Scopus, Ebsco Host and Scielo databases, considering as an inclusion criterion the works that used experimental design in data collection. The studies included in this review were 22, 64% of which came from the top two coffee-roducing countries in Latin America (Brazil and Colombia); the analysis of these studies revealed that the input variables were climatic, soil fertility properties, management and physical properties of the crops. In addition, they used supervised (decision tree, artificial neural networks, multiple linear regression, among others) and unsupervised (clustering) algorithms, with the support of experts in the study of the fungus and used statistics such as coefficient of determination, root mean square error, among others, to validate the proposals. Overall, this systematic review provides evidence of the effectiveness of data mining algorithms implemented to detect the occurrence of rust in coffee plantationapplication/pdfengOnLine Journal of Biological SciencesUSOnLine Journal of Biological SciencesOnLine Journal of Biological Scienceshttps://doi.org/10.3844/ojbsci.2022.157.164info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de Jaén||Repositorio Institucional - UNJreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJplant productsimulation modelstatistical inferencehemileia vastatrixhttps://purl.org/pe-repo/ocde/ford#4.01.02Detection of Rust Emergence in Coffee Plantations using Data Mining: A Systematic Reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion44798819428210487255295960387747ORIGINALDeclaración Jurada de Acceso a la Información_7-Roya.pdfDeclaración Jurada de Acceso a la Información_7-Roya.pdfapplication/pdf107652http://repositorio.unj.edu.pe/bitstream/UNJ/741/1/Declaraci%c3%b3n%20Jurada%20de%20Acceso%20a%20la%20Informaci%c3%b3n_7-Roya.pdf6799afafe9d970b413924c3da910c4f5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/741/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52UNJ/741oai:repositorio.unj.edu.pe:UNJ/7412025-01-02 15:35:39.816Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.773366
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).