Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

Descripción del Articulo

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems...

Descripción completa

Detalles Bibliográficos
Autor: Marcelo Peña,José Luis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/629
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/629
https://doi.org/10.1038/s41598-023-28132-y
Nivel de acceso:acceso abierto
Materia:Species,Amazonian,patterns
https://purl.org/pe-repo/ocde/ford#1.05.00
id UNJA_160af5436e8885fd01fadcc6907bf90d
oai_identifier_str oai:repositorio.unj.edu.pe:UNJ/629
network_acronym_str UNJA
network_name_str UNJ-Institucional
repository_id_str 4820
dc.title.es_ES.fl_str_mv Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
title Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
spellingShingle Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
Marcelo Peña,José Luis
Species,Amazonian,patterns
https://purl.org/pe-repo/ocde/ford#1.05.00
title_short Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
title_full Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
title_fullStr Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
title_full_unstemmed Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
title_sort Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
author Marcelo Peña,José Luis
author_facet Marcelo Peña,José Luis
author_role author
dc.contributor.author.fl_str_mv Marcelo Peña,José Luis
dc.subject.es_ES.fl_str_mv Species,Amazonian,patterns
topic Species,Amazonian,patterns
https://purl.org/pe-repo/ocde/ford#1.05.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.00
description In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-28T17:52:51Z
dc.date.available.none.fl_str_mv 2024-02-28T17:52:51Z
dc.date.issued.fl_str_mv 2024-01-28
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://repositorio.unj.edu.pe/handle/UNJ/629
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.1038/s41598-023-28132-y
url http://repositorio.unj.edu.pe/handle/UNJ/629
https://doi.org/10.1038/s41598-023-28132-y
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.es_ES.fl_str_mv Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
dc.relation.ispartof.es_ES.fl_str_mv Scientific Reports
Scientific Reports
dc.relation.uri.es_ES.fl_str_mv https://doi.org/10.1038/s41598-023-28132-y
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Universidad Nacional de Jaén
dc.publisher.country.es_ES.fl_str_mv GB
dc.source.es_ES.fl_str_mv Universidad Nacional de Jaén||Repositorio Institucional – UNJ
dc.source.none.fl_str_mv reponame:UNJ-Institucional
instname:Universidad Nacional de Jaén
instacron:UNJ
instname_str Universidad Nacional de Jaén
instacron_str UNJ
institution UNJ
reponame_str UNJ-Institucional
collection UNJ-Institucional
bitstream.url.fl_str_mv http://repositorio.unj.edu.pe/bitstream/UNJ/629/1/ANEXO%208-Pe%c3%b1a-3.pdf
http://repositorio.unj.edu.pe/bitstream/UNJ/629/2/license.txt
bitstream.checksum.fl_str_mv beade5c0a4a14bf27bb4ef117eb1e672
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio UNJ
repository.mail.fl_str_mv repositorio@unj.edu.pe
_version_ 1844794329895272448
spelling Marcelo Peña,José Luis2024-02-28T17:52:51Z2024-02-28T17:52:51Z2024-01-28http://repositorio.unj.edu.pe/handle/UNJ/629https://doi.org/10.1038/s41598-023-28132-yIn a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.application/pdfengUniversidad Nacional de JaénGBUnraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecologyScientific ReportsScientific Reportshttps://doi.org/10.1038/s41598-023-28132-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de Jaén||Repositorio Institucional – UNJreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJSpecies,Amazonian,patternshttps://purl.org/pe-repo/ocde/ford#1.05.00Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecologyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALANEXO 8-Peña-3.pdfANEXO 8-Peña-3.pdfapplication/pdf106118http://repositorio.unj.edu.pe/bitstream/UNJ/629/1/ANEXO%208-Pe%c3%b1a-3.pdfbeade5c0a4a14bf27bb4ef117eb1e672MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/629/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52UNJ/629oai:repositorio.unj.edu.pe:UNJ/6292025-01-02 09:30:05.286Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.408957
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).