Predicción de calidad y etapa de madurez en mango Kent (Magnifera indica) usando imágenes hiperespectrales
Descripción del Articulo
In the search for non-destructive inspection forms in fruit quality, in recent years there have been increased studies on the use of hyperspectral images in their quality. The objective of this investigation was to evaluate the level of prediction of quality parameters and maturity stage of the “Ken...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | UNITRU-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:dspace.unitru.edu.pe:20.500.14414/14826 |
Enlace del recurso: | https://hdl.handle.net/20.500.14414/14826 |
Nivel de acceso: | acceso abierto |
Materia: | análisis espectral análisis de imágenes mango Kent regresión lineal múltiple tecnología de imágenes atributos de calidad. |
Sumario: | In the search for non-destructive inspection forms in fruit quality, in recent years there have been increased studies on the use of hyperspectral images in their quality. The objective of this investigation was to evaluate the level of prediction of quality parameters and maturity stage of the “Kent” mango by a model obtained using hyperspectral images. 120 mangoes were stored at four different temperatures (10, 12.5, 15 and 17.5 °C) at which images of both sides were taken in the near infrared range (890 - 1710 nm), one per day, for 12 days and with two repetitions for each fruit. Parallel to the taking of images, quality parameters such as firmness, color (ΔE*), brix degrees and moisture content were determined in the same mangoes. To obtain the model, the quality attributes were correlated with 70% of the spectral data resulting from the images using the partial least squares regression method (PLS-R). With the remaining 30% of the spectral data, the model was evaluated using Linear Multiple Regression (MLR). As a result, based on the selection of optimal wavelengths, the correlation coefficients (R2) were 0.12, 0.36, 0.33 and 0.66 and the Mean Square Root values of the Standard Prediction Error were 8.19, 14.24, 2.15, and 2.18 to predict color, moisture content, firmness and brix degrees respectively. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).