Método de los Elementos Finitos aplicados a la Ecuación de Difusión Ambipolar

Descripción del Articulo

El presente trabajo de investigación permite hallar la solución aproximada de un problema de una ecuación en derivadas parciales, la cual se conoce con el nombre de ecuación de difusión ambipolar. Para encontrar esta solución se utiliza el método de aproximación numérica de los elementos finitos, si...

Descripción completa

Detalles Bibliográficos
Autor: Aguirre Pardo, Walter Gilmer
Formato: tesis de grado
Fecha de Publicación:2014
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/11533
Enlace del recurso:https://hdl.handle.net/20.500.14414/11533
Nivel de acceso:acceso abierto
Materia:Elementos Finitos
Ecuación de Difusión Ambipolar
Descripción
Sumario:El presente trabajo de investigación permite hallar la solución aproximada de un problema de una ecuación en derivadas parciales, la cual se conoce con el nombre de ecuación de difusión ambipolar. Para encontrar esta solución se utiliza el método de aproximación numérica de los elementos finitos, siendo imprescindible considerar principios de física, de ecuaciones diferenciales, del análisis funcional y del ´algebra lineal, entre otras. Se tiene la formulación de la ecuación de difusión ambipolar, así como el planteamiento del problema de_x000D_ Neumann; se asume que no se dispone de la solución exacta de este problema, de modo que se considera un segundo planteamiento llamado planteamiento_x000D_ variacional con respecto al planteamiento convencional, por consiguiente se resuelve el problema de forma correcta únicamente en ciertos puntos, obteniéndose de esta manera un problema discreto, que consiste en sistema lineal de primer orden, cuya resolución determina la solución numérica del problema._x000D_ Finalmente se visualiza la solución basados en la elaboración de un programa en MATLAB
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).