Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids
Descripción del Articulo
Universidad Nacional Agraria La Molina. Facultad de Economía y Planificación. Departamento Académico de Estadística e Informática
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2020 |
Institución: | Universidad Nacional Agraria La Molina |
Repositorio: | UNALM-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.lamolina.edu.pe:20.500.12996/4633 |
Enlace del recurso: | https://hdl.handle.net/20.500.12996/4633 |
Nivel de acceso: | acceso abierto |
Materia: | Análisis con algoritmos Estudiantes Universidades Perfil Modelos matemáticos Métodos estadísticos Análisis de datos Evaluación Perú Examen de admisión https://purl.org/pe-repo/ocde/ford#4.05.00 |
id |
UNAL_bc6ca8225cbd84a0978c316514af87fd |
---|---|
oai_identifier_str |
oai:repositorio.lamolina.edu.pe:20.500.12996/4633 |
network_acronym_str |
UNAL |
network_name_str |
UNALM-Institucional |
repository_id_str |
3039 |
dc.title.es_PE.fl_str_mv |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
title |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
spellingShingle |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids Chavez Valderrama, Ledvir Ayrton Walter Análisis con algoritmos Estudiantes Universidades Perfil Modelos matemáticos Métodos estadísticos Análisis de datos Evaluación Perú Examen de admisión https://purl.org/pe-repo/ocde/ford#4.05.00 |
title_short |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
title_full |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
title_fullStr |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
title_full_unstemmed |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
title_sort |
Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoids |
author |
Chavez Valderrama, Ledvir Ayrton Walter |
author_facet |
Chavez Valderrama, Ledvir Ayrton Walter |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Salinas Flores, Jesús Walter |
dc.contributor.author.fl_str_mv |
Chavez Valderrama, Ledvir Ayrton Walter |
dc.subject.es_PE.fl_str_mv |
Análisis con algoritmos Estudiantes Universidades Perfil Modelos matemáticos Métodos estadísticos Análisis de datos Evaluación Perú Examen de admisión |
topic |
Análisis con algoritmos Estudiantes Universidades Perfil Modelos matemáticos Métodos estadísticos Análisis de datos Evaluación Perú Examen de admisión https://purl.org/pe-repo/ocde/ford#4.05.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.05.00 |
description |
Universidad Nacional Agraria La Molina. Facultad de Economía y Planificación. Departamento Académico de Estadística e Informática |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-03-30T16:34:59Z |
dc.date.available.none.fl_str_mv |
2021-03-30T16:34:59Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.en_US.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12996/4633 |
url |
https://hdl.handle.net/20.500.12996/4633 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.en_US.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional Agraria La Molina |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:UNALM-Institucional instname:Universidad Nacional Agraria La Molina instacron:UNALM |
instname_str |
Universidad Nacional Agraria La Molina |
instacron_str |
UNALM |
institution |
UNALM |
reponame_str |
UNALM-Institucional |
collection |
UNALM-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.lamolina.edu.pe/bitstreams/89abd525-de7c-4e27-ab72-e754e92eae2b/download https://repositorio.lamolina.edu.pe/bitstreams/fa0fd299-7259-4c48-9097-1903ac1033c7/download https://repositorio.lamolina.edu.pe/bitstreams/bf63989c-2aa2-47ba-a9ff-94e70dc16a9a/download https://repositorio.lamolina.edu.pe/bitstreams/c7cf53af-a939-4b01-b6af-a1f905e3ba87/download |
bitstream.checksum.fl_str_mv |
70cd981408dd7db353676a0e66e72b17 97c5bee00fbb4c4f8867bd742b579336 d0bea7f8efb0808f86953eee53a3bd83 52b9f85edc73704293156a25efb8b164 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Nacional Agraria La Molina |
repository.mail.fl_str_mv |
dspace@lamolina.edu.pe |
_version_ |
1845706939060715520 |
spelling |
Salinas Flores, Jesús Walterb818778e-f04d-40a4-a18e-a1c75814cd5cChavez Valderrama, Ledvir Ayrton Walter2021-03-30T16:34:59Z2021-03-30T16:34:59Z2020https://hdl.handle.net/20.500.12996/4633Universidad Nacional Agraria La Molina. Facultad de Economía y Planificación. Departamento Académico de Estadística e InformáticaEn el presente trabajo de investigación se realizó un estudio comparativo de algoritmos no supervisados para la caracterización del perfil del ingresante de una universidad pública respecto a sus variables sociodemográficas, económicas y de rendimiento académico utilizando algoritmos de segmentación K-prototypes y K-medoids, con el fin de generar conocimientos valiosos y útiles para lograr una mejor comprensión de la diversidad de universitarios que ingresan y con ello conocer el tipo de estudiante que la institución forma, La aplicación se efectuó con datos de alumnos ingresantes a la Universidad Nacional Agraria La Molina de los ciclos académicos 2015-I y 2015-II de las modalidades de Concurso Ordinario y Dos Primeros Puestos de Colegios de Educación Secundaria con un total de 690 postulantes. Se realizó el preprocesamiento de los datos y la aplicación de algoritmos clustering trabajando tanto con variables cuantitativas como cualitativas, para luego determinar el número óptimo de conglomerados y el algoritmo más adecuado utilizando índices de validación interna. Se realizó la validación de los clusters obtenidos de manera univariada (análisis de variancia o ANOVA y prueba Chi cuadrado) y multivariada (algoritmo Boruta y árbol C5.0), por último, se determinó las variables más importantes para caracterizar el perfil de los ingresantes. Con la investigación realizada se logró identificar 3 tipos de alumnos: Ingresante previsto, Ingresante en proceso y el Ingresante en inicio; cada uno con características peculiares, las cuales permitirán a los responsables de las políticas educativas y en especial a los profesores consejeros saber el tipo de alumno que tienen a su cargo desde que ingresa a la universidad y empezar con ello políticas educativas como el emprendimiento del acompañamiento especializado, sistemático e integral; buscando la realización del paradigma del aprendizaje que la universidad se ha propuesto en su Modelo Educativo.In the present research work, a comparative study of unsupervised algorithms was carried out to characterization of the profile of the admitted student of a public university with respect their sociodemographic, economic and academic performance variables using Kprototypes and K-medoids segmentation algorithms, in order to generate valuable and useful knowledge to achieve a better understanding of the diversity of admitted university students and to know the kind of student institution will form academically. The application was effected in data of admitted students to the National Agrarian University La Molina of academic cycles 2015-I and 2015-II of the modalities Ordinary Admission exam and Top two Positions Secondary Schools with a total of 690 candidates of higher education. The data were preprocessed and the clustering algorithms were applied, I worked with quantitative and qualitative variables to determine the optimal number of clusters and the most appropriate algorithm using internal validation indices. The clusters obtained were validated using univariate analysis (variance analysis or ANOVA and Chi square test) and multivariate (Boruta and C5.0 tree algorithm). Finally, the most important variables were determined to characterize the profile of the admitted students. Based on the research work, it was possible to identify 3 kinds of students: Expected Admitted Student, Admitted Student in Process and Beginner Admitted Student, each with peculiar features, which will allow responsible of educational policies and in particular for the advisory teachers to know the kind of student, whom they are responsible from the moment they are admitted to the university and begin with educational policies such as specialist, systematic and integral monitoring always looking for the realization of the learning paradigm that the university has proposed in its Educational Model.application/pdfspaUniversidad Nacional Agraria La MolinaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Análisis con algoritmosEstudiantesUniversidadesPerfilModelos matemáticosMétodos estadísticosAnálisis de datosEvaluaciónPerúExamen de admisiónhttps://purl.org/pe-repo/ocde/ford#4.05.00Caracterización del perfil del ingresante de una Universidad Pública aplicando algoritmos clustering K-Prototypes y K- Medoidsinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionreponame:UNALM-Institucionalinstname:Universidad Nacional Agraria La Molinainstacron:UNALMSUNEDUEstadística e InformáticaUniversidad Nacional Agraria La Molina. Facultad de Economía y PlanificaciónIngeniero Estadístico Informático72041473https://orcid.org/0000-0003-4321-424708684738https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#tituloProfesional542026Rosas Villena, Fernando RenéBullón Camarena, Luz JeanetSoto Rodríguez, Iván DennysORIGINALchavez-valderrama-ledvir-ayrton-walter.pdfchavez-valderrama-ledvir-ayrton-walter.pdfTexto completoapplication/pdf3534283https://repositorio.lamolina.edu.pe/bitstreams/89abd525-de7c-4e27-ab72-e754e92eae2b/download70cd981408dd7db353676a0e66e72b17MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81664https://repositorio.lamolina.edu.pe/bitstreams/fa0fd299-7259-4c48-9097-1903ac1033c7/download97c5bee00fbb4c4f8867bd742b579336MD52TEXTchavez-valderrama-ledvir-ayrton-walter.pdf.txtchavez-valderrama-ledvir-ayrton-walter.pdf.txtExtracted texttext/plain289863https://repositorio.lamolina.edu.pe/bitstreams/bf63989c-2aa2-47ba-a9ff-94e70dc16a9a/downloadd0bea7f8efb0808f86953eee53a3bd83MD53THUMBNAILchavez-valderrama-ledvir-ayrton-walter.pdf.jpgchavez-valderrama-ledvir-ayrton-walter.pdf.jpgGenerated Thumbnailimage/jpeg3211https://repositorio.lamolina.edu.pe/bitstreams/c7cf53af-a939-4b01-b6af-a1f905e3ba87/download52b9f85edc73704293156a25efb8b164MD5420.500.12996/4633oai:repositorio.lamolina.edu.pe:20.500.12996/46332023-01-05 03:22:39.531https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.lamolina.edu.peRepositorio Universidad Nacional Agraria La Molinadspace@lamolina.edu.peTGljZW5jaWEgZGUgVXNvCgpMYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBBZ3JhcmlhIExhIE1vbGluYSAoVU5BTE0pLiBkaWZ1bmRlIG1lZGlhbnRlIHN1IHJlcG9zaXRvcmlvIGxvcyB0cmFiYWpvcyBkZSBpbnZlc3RpZ2FjacOzbiBwcm9kdWNpZG9zIHBvciBsb3MgbWllbWJyb3MgZGUgbGEgdW5pdmVyc2lkYWQuIEVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBkaWdpdGFsZXMgZXMgZGUgYWNjZXNvIGFiaWVydG8gcGFyYSB0b2RhIHBlcnNvbmEgaW50ZXJlc2FkYSAuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJpY2EgZGUgbGEgb2JyYSwgc3UgY29waWEgeSBkaXN0cmlidWNpw7NuLiBQYXJhIGVzdG8gZXMgbmVjZXNhcmlvIHF1ZSBzZSBjdW1wbGEgY29uIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOgoKRWwgbmVjZXNhcmlvIHJlY29ub2NpbWllbnRvIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEsIGlkZW50aWZpY2FuZG8gb3BvcnR1bmEgeSBjb3JyZWN0YW1lbnRlIGEgbGEgcGVyc29uYSBxdWUgcG9zZWEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLgoKTm8gZXN0w6EgcGVybWl0aWRvIGVsIHVzbyBpbmRlYmlkbyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBjb24gZmluZXMgZGUgbHVjcm8gbyBjdWFscXVpZXIgdGlwbyBkZSBhY3RpdmlkYWQgcXVlIHByb2R1emNhIGdhbmFuY2lhcyBhIGxhcyBwZXJzb25hcyBxdWUgbG8gZGlmdW5kZW4gc2luIGVsIGNvbnNlbnRpbWllbnRvIGRlbCBhdXRvciAoYXV0b3IgbGVnYWwpLgoKTG9zIHRyYWJham9zIHF1ZSBzZSBwcm9kdXpjYW4sIGEgcGFydGlyIGRlIGxhIG9icmEsIGRlYmVuIHBvc2VlciBsYSBjaXRhY2nDs24gcGVydGluZW50ZSB0YWwgY29tbyBsbyBpbmRpY2FuIGxhcyBOb3JtYXMgVMOpY25pY2FzIGRlbCBJSUNBIHkgQ0FUSUUgZGUgUmVkYWNjacOzbiBkZSBSZWZlcmVuY2lhcyBCaWJsaW9ncsOhZmljYXMuIENhc28gY29udHJhcmlvLCBzZSBpbmN1cnJpcsOhIGVuIGxhIGZpZ3VyYSBqdXLDrWRpY2EgZGVsIHBsYWdpby4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgVU5BTE0gbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRCBMLiBOwrA4MjIpLiBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OCogeSAxODkqIGRlbCBkZWNyZXRvIGxlZ2lzbGF0aXZvIE7CsDgyMiwgTGV5IHNvYnJlIGRlcmVjaG9zIGRlIGF1dG9yIHByb211bGdhZG8gZW4gMjAwNSAoTGV5IE7CsDI4NTE3KSwgRGVjcmV0byBMZWdpc2xhdGl2byBxdWUgYXBydWViYSBsYSBtb2RpZmljYWNpw7NuIGRlbCBEZWNyZXRvIExlZ2lzbGF0aXZvIE7CsDgyMiwgTGV5IHNvYnJlIGVsIERlcmVjaG8gZGUgQXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA4IChELiBMLiBOwrAxMDc2KS4KCk9ic2VydmFjaW9uZXM6CgpJbnNjcmliaXJzZSBlbiBDcmVhdGl2ZSBDb21tb25zIEJBTgo= |
score |
12.789326 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).