MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES
Descripción del Articulo
OBJECTIVE. DETERMINE WAS MATHEMATICALLY MODELED USING THE EXPRESSION N = M⁄(1 + Q × E−K×T), WHICH IS A PREDICTIVE EQUATION. USING THIS MODEL, THE NUMBER OF DEATHS DUE TO COVID-19 WORLDWIDE WAS ESTIMATED.DESIGN. CORRELATIONAL, PROSPECTIVE, PREDICTIVE AND TRANSVERSAL STUDY. PARTICIPANS. THE DATA ON DE...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional del Callao |
Repositorio: | UNAC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unac.edu.pe:20.500.12952/9876 |
Enlace del recurso: | https://hdl.handle.net/20.500.12952/9876 |
Nivel de acceso: | acceso abierto |
Materia: | COVID-19 DISEASE, ESTIMATION, GLOBAL FATALITIES, LOGISTIC MODELING, VALIDATION https://purl.org/pe-repo/ocde/ford#1.00.00 |
id |
UNAC_fbdc93541bc8e83017ee36e17b64bd87 |
---|---|
oai_identifier_str |
oai:repositorio.unac.edu.pe:20.500.12952/9876 |
network_acronym_str |
UNAC |
network_name_str |
UNAC-Institucional |
repository_id_str |
2593 |
spelling |
OLEGARIO, MARÍN-MACHUCAESQUILO, HUMALA-CAYCHO YURICHINCHAY-BARRAGÁN, CARLOS ENRIQUEYATACO-VELÁSQUEZ, LUIS ANDRÉSROJAS RUEDA, MARÍA DEL PILARBONILLA-FERREYRA, JORGE LUISPEREZ-TON, LUIS ADOLFOOBERT, MARÍN-SÁNCHEZ2025-02-28T20:31:50Z2025-02-28T20:31:50Z202425768484https://hdl.handle.net/20.500.12952/987610.55214/25768484.v8i6.3687OBJECTIVE. DETERMINE WAS MATHEMATICALLY MODELED USING THE EXPRESSION N = M⁄(1 + Q × E−K×T), WHICH IS A PREDICTIVE EQUATION. USING THIS MODEL, THE NUMBER OF DEATHS DUE TO COVID-19 WORLDWIDE WAS ESTIMATED.DESIGN. CORRELATIONAL, PROSPECTIVE, PREDICTIVE AND TRANSVERSAL STUDY. PARTICIPANS. THE DATA ON DECEASED INDIVIDUALS DUE TO THE COVID-19 DISEASE UP TO NOVEMBER 5, 2022, WAS CONSIDERED. MAIN MEASUREMENT. THIS DATA WAS USED TO ANALYZE THE PANDEMIC DISPERSION, WHICH WAS DETERMINED TO EXHIBIT LOGISTIC SIGMOIDAL BEHAVIOR. BY DERIVING EQUATION 3, THE RATE OF DEATHS DUE TO COVID-19 WORLDWIDE WAS CALCULATED, OBTAINING THE PREDICTIVE MODEL REPRESENTED IN FIGURE 3.RESULTS. USING EQUATION (5), THE CRITICAL TIME TC = 447 DAYS AND THE MAXIMUM SPEED (FORMULA PRESENTED) MÁX = 1 525 028,553 PERSONS/DAY AND THE DATE WHEN THE GLOBAL DEATH RATE DUE TO COVID-19 REACHED ITS MAXIMUM WAS JULY 6, 2021. THE PEARSON CORRELATION COEFFICIENT BETWEEN THE ELAPSED TIME (T) AND THE NUMBER OF DECEASED INDIVIDUALS (N) WORLDWIDE, BASED ON 33 CASES, WAS R = −0,9365. CONCLUSIONS. THIS INDICATES THAT THE RELATIONSHIP BETWEEN ELAPSED TIME AND THE NUMBER OF DECEASED INDIVIDUALS IS REAL, WITH NO SIGNIFICANT DIFFERENCE, SHOWING THAT THE PREDICTIVE MODEL PROVIDES A HIGH ESTIMATION OF THE CORRELATED DATA.THERE IS A "VERY STRONG CORRELATION" BETWEEN ELAPSED TIME (T) AND THE NUMBER OF DECEASED INDIVIDUALS (N) WITH 87,7 % OF THE VARIANCE IN N EXPLAINED BY T, UE TO THE COVID-19 DISEASE. THESE MODELS HELP US PREDICT THE BEHAVIOR OF DISEASE LIKE COVID-19. © 2024 BY THE AUTHORS; LICENSEE LEARNING GATE.application/pdfspaEDELWEISS APPLIED SCIENCE AND TECHNOLOGYinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/COVID-19 DISEASE, ESTIMATION, GLOBAL FATALITIES, LOGISTIC MODELING, VALIDATIONhttps://purl.org/pe-repo/ocde/ford#1.00.00MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIESinfo:eu-repo/semantics/articlereponame:UNAC-Institucionalinstname:Universidad Nacional del Callaoinstacron:UNAC20.500.12952/9876oai:repositorio.unac.edu.pe:20.500.12952/98762025-02-28 15:31:50.054https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unac.edu.peRepositorio de la Universidad Nacional del Callaodspace-help@myu.edu |
dc.title.es_PE.fl_str_mv |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
title |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
spellingShingle |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES OLEGARIO, MARÍN-MACHUCA COVID-19 DISEASE, ESTIMATION, GLOBAL FATALITIES, LOGISTIC MODELING, VALIDATION https://purl.org/pe-repo/ocde/ford#1.00.00 |
title_short |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
title_full |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
title_fullStr |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
title_full_unstemmed |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
title_sort |
MATHEMATICAL MODELING OF GLOBAL COVID-19 FATALITIES |
author |
OLEGARIO, MARÍN-MACHUCA |
author_facet |
OLEGARIO, MARÍN-MACHUCA ESQUILO, HUMALA-CAYCHO YURI CHINCHAY-BARRAGÁN, CARLOS ENRIQUE YATACO-VELÁSQUEZ, LUIS ANDRÉS ROJAS RUEDA, MARÍA DEL PILAR BONILLA-FERREYRA, JORGE LUIS PEREZ-TON, LUIS ADOLFO OBERT, MARÍN-SÁNCHEZ |
author_role |
author |
author2 |
ESQUILO, HUMALA-CAYCHO YURI CHINCHAY-BARRAGÁN, CARLOS ENRIQUE YATACO-VELÁSQUEZ, LUIS ANDRÉS ROJAS RUEDA, MARÍA DEL PILAR BONILLA-FERREYRA, JORGE LUIS PEREZ-TON, LUIS ADOLFO OBERT, MARÍN-SÁNCHEZ |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
OLEGARIO, MARÍN-MACHUCA ESQUILO, HUMALA-CAYCHO YURI CHINCHAY-BARRAGÁN, CARLOS ENRIQUE YATACO-VELÁSQUEZ, LUIS ANDRÉS ROJAS RUEDA, MARÍA DEL PILAR BONILLA-FERREYRA, JORGE LUIS PEREZ-TON, LUIS ADOLFO OBERT, MARÍN-SÁNCHEZ |
dc.subject.es_PE.fl_str_mv |
COVID-19 DISEASE, ESTIMATION, GLOBAL FATALITIES, LOGISTIC MODELING, VALIDATION |
topic |
COVID-19 DISEASE, ESTIMATION, GLOBAL FATALITIES, LOGISTIC MODELING, VALIDATION https://purl.org/pe-repo/ocde/ford#1.00.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.00.00 |
description |
OBJECTIVE. DETERMINE WAS MATHEMATICALLY MODELED USING THE EXPRESSION N = M⁄(1 + Q × E−K×T), WHICH IS A PREDICTIVE EQUATION. USING THIS MODEL, THE NUMBER OF DEATHS DUE TO COVID-19 WORLDWIDE WAS ESTIMATED.DESIGN. CORRELATIONAL, PROSPECTIVE, PREDICTIVE AND TRANSVERSAL STUDY. PARTICIPANS. THE DATA ON DECEASED INDIVIDUALS DUE TO THE COVID-19 DISEASE UP TO NOVEMBER 5, 2022, WAS CONSIDERED. MAIN MEASUREMENT. THIS DATA WAS USED TO ANALYZE THE PANDEMIC DISPERSION, WHICH WAS DETERMINED TO EXHIBIT LOGISTIC SIGMOIDAL BEHAVIOR. BY DERIVING EQUATION 3, THE RATE OF DEATHS DUE TO COVID-19 WORLDWIDE WAS CALCULATED, OBTAINING THE PREDICTIVE MODEL REPRESENTED IN FIGURE 3.RESULTS. USING EQUATION (5), THE CRITICAL TIME TC = 447 DAYS AND THE MAXIMUM SPEED (FORMULA PRESENTED) MÁX = 1 525 028,553 PERSONS/DAY AND THE DATE WHEN THE GLOBAL DEATH RATE DUE TO COVID-19 REACHED ITS MAXIMUM WAS JULY 6, 2021. THE PEARSON CORRELATION COEFFICIENT BETWEEN THE ELAPSED TIME (T) AND THE NUMBER OF DECEASED INDIVIDUALS (N) WORLDWIDE, BASED ON 33 CASES, WAS R = −0,9365. CONCLUSIONS. THIS INDICATES THAT THE RELATIONSHIP BETWEEN ELAPSED TIME AND THE NUMBER OF DECEASED INDIVIDUALS IS REAL, WITH NO SIGNIFICANT DIFFERENCE, SHOWING THAT THE PREDICTIVE MODEL PROVIDES A HIGH ESTIMATION OF THE CORRELATED DATA.THERE IS A "VERY STRONG CORRELATION" BETWEEN ELAPSED TIME (T) AND THE NUMBER OF DECEASED INDIVIDUALS (N) WITH 87,7 % OF THE VARIANCE IN N EXPLAINED BY T, UE TO THE COVID-19 DISEASE. THESE MODELS HELP US PREDICT THE BEHAVIOR OF DISEASE LIKE COVID-19. © 2024 BY THE AUTHORS; LICENSEE LEARNING GATE. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-02-28T20:31:50Z |
dc.date.available.none.fl_str_mv |
2025-02-28T20:31:50Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
25768484 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12952/9876 |
dc.identifier.doi.none.fl_str_mv |
10.55214/25768484.v8i6.3687 |
identifier_str_mv |
25768484 10.55214/25768484.v8i6.3687 |
url |
https://hdl.handle.net/20.500.12952/9876 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDELWEISS APPLIED SCIENCE AND TECHNOLOGY |
publisher.none.fl_str_mv |
EDELWEISS APPLIED SCIENCE AND TECHNOLOGY |
dc.source.none.fl_str_mv |
reponame:UNAC-Institucional instname:Universidad Nacional del Callao instacron:UNAC |
instname_str |
Universidad Nacional del Callao |
instacron_str |
UNAC |
institution |
UNAC |
reponame_str |
UNAC-Institucional |
collection |
UNAC-Institucional |
repository.name.fl_str_mv |
Repositorio de la Universidad Nacional del Callao |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1846066502706397184 |
score |
13.135628 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).