EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
Descripción del Articulo
BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional del Callao |
Repositorio: | UNAC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unac.edu.pe:20.500.12952/9847 |
Enlace del recurso: | https://hdl.handle.net/20.500.12952/9847 |
Nivel de acceso: | acceso abierto |
Materia: | ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING https://purl.org/pe-repo/ocde/ford#5.03.01 |
id |
UNAC_43d6a82bd7f53a0c913a9bf8b65bfbed |
---|---|
oai_identifier_str |
oai:repositorio.unac.edu.pe:20.500.12952/9847 |
network_acronym_str |
UNAC |
network_name_str |
UNAC-Institucional |
repository_id_str |
2593 |
spelling |
BLANCO-VICTORIO, DANIEL JOSÉLÓPEZ-RAMOS, ROXANA PATRICIABLANCO-RODRIGUEZ, JOHAN DANIELLÓPEZ-LUJÁN, NIEVES ASTERIALEÓN-UNTIVEROS, GINA FIORELLASICCHA-MACASSI, ANA LUCY2025-02-28T20:26:59Z2025-02-28T20:26:59Z202419895488https://hdl.handle.net/20.500.12952/984710.4317/jced.61514BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS AND THEIR RESPECTIVE PARENTS OR GUARDIANS TREATED AT A HOSPITAL IN ICA, PERU. THE DATABASE WITH SIGNIFICANT VARIABLES WAS LOADED INTO THE ORANGE DATA MINING SOFTWARE TO BE PROCESSED WITH DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING. TO EVALUATE THE PERFORMANCE OF THE PREDICTION MODELS, THE FOLLOWING INDICATORS WERE USED: PRECISION, RECALL, F1-SCORE AND ACCURACY. THE DISCRIMINATORY POWER OF THE MODEL WAS DETERMINED BY THE VALUE OF THE ROC CURVE. RESULTS: 76.88% OF THE CHILDREN EVALUATED HAD CAVITIES. THE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORK (NN) MODELS OBTAINED THE BEST PERFORMANCE VALUES, SHOWING SIMILAR VALUES OF ACCURACY, F1-SCORE AND RECALL (0.927, 0.950 AND 0.974; RESPECTIVELY). THE PROBABILITY OF CORRECTLY DISTINGUISHING A CHILD WITH ECC WAS 90.40% FOR THE SVM MODEL AND 86.68% FOR THE NN MODEL. CONCLUSIONS: THE MACHINE LEARNING-BASED CARIES PREDICTION MODELS WITH THE BEST PERFORMANCE WERE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORKS (NN). © MEDICINA ORAL S. L. C.I.F. B 96689336 - EISSN: 1989–5488application/pdfspaJOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRYinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNINGhttps://purl.org/pe-repo/ocde/ford#5.03.01EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNINGinfo:eu-repo/semantics/articlereponame:UNAC-Institucionalinstname:Universidad Nacional del Callaoinstacron:UNAC20.500.12952/9847oai:repositorio.unac.edu.pe:20.500.12952/98472025-02-28 15:26:59.709https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unac.edu.peRepositorio de la Universidad Nacional del Callaodspace-help@myu.edu |
dc.title.es_PE.fl_str_mv |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
title |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
spellingShingle |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING BLANCO-VICTORIO, DANIEL JOSÉ ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING https://purl.org/pe-repo/ocde/ford#5.03.01 |
title_short |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
title_full |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
title_fullStr |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
title_full_unstemmed |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
title_sort |
EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING |
author |
BLANCO-VICTORIO, DANIEL JOSÉ |
author_facet |
BLANCO-VICTORIO, DANIEL JOSÉ LÓPEZ-RAMOS, ROXANA PATRICIA BLANCO-RODRIGUEZ, JOHAN DANIEL LÓPEZ-LUJÁN, NIEVES ASTERIA LEÓN-UNTIVEROS, GINA FIORELLA SICCHA-MACASSI, ANA LUCY |
author_role |
author |
author2 |
LÓPEZ-RAMOS, ROXANA PATRICIA BLANCO-RODRIGUEZ, JOHAN DANIEL LÓPEZ-LUJÁN, NIEVES ASTERIA LEÓN-UNTIVEROS, GINA FIORELLA SICCHA-MACASSI, ANA LUCY |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
BLANCO-VICTORIO, DANIEL JOSÉ LÓPEZ-RAMOS, ROXANA PATRICIA BLANCO-RODRIGUEZ, JOHAN DANIEL LÓPEZ-LUJÁN, NIEVES ASTERIA LEÓN-UNTIVEROS, GINA FIORELLA SICCHA-MACASSI, ANA LUCY |
dc.subject.es_PE.fl_str_mv |
ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING |
topic |
ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING https://purl.org/pe-repo/ocde/ford#5.03.01 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.03.01 |
description |
BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS AND THEIR RESPECTIVE PARENTS OR GUARDIANS TREATED AT A HOSPITAL IN ICA, PERU. THE DATABASE WITH SIGNIFICANT VARIABLES WAS LOADED INTO THE ORANGE DATA MINING SOFTWARE TO BE PROCESSED WITH DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING. TO EVALUATE THE PERFORMANCE OF THE PREDICTION MODELS, THE FOLLOWING INDICATORS WERE USED: PRECISION, RECALL, F1-SCORE AND ACCURACY. THE DISCRIMINATORY POWER OF THE MODEL WAS DETERMINED BY THE VALUE OF THE ROC CURVE. RESULTS: 76.88% OF THE CHILDREN EVALUATED HAD CAVITIES. THE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORK (NN) MODELS OBTAINED THE BEST PERFORMANCE VALUES, SHOWING SIMILAR VALUES OF ACCURACY, F1-SCORE AND RECALL (0.927, 0.950 AND 0.974; RESPECTIVELY). THE PROBABILITY OF CORRECTLY DISTINGUISHING A CHILD WITH ECC WAS 90.40% FOR THE SVM MODEL AND 86.68% FOR THE NN MODEL. CONCLUSIONS: THE MACHINE LEARNING-BASED CARIES PREDICTION MODELS WITH THE BEST PERFORMANCE WERE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORKS (NN). © MEDICINA ORAL S. L. C.I.F. B 96689336 - EISSN: 1989–5488 |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-02-28T20:26:59Z |
dc.date.available.none.fl_str_mv |
2025-02-28T20:26:59Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
19895488 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12952/9847 |
dc.identifier.doi.none.fl_str_mv |
10.4317/jced.61514 |
identifier_str_mv |
19895488 10.4317/jced.61514 |
url |
https://hdl.handle.net/20.500.12952/9847 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
JOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRY |
publisher.none.fl_str_mv |
JOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRY |
dc.source.none.fl_str_mv |
reponame:UNAC-Institucional instname:Universidad Nacional del Callao instacron:UNAC |
instname_str |
Universidad Nacional del Callao |
instacron_str |
UNAC |
institution |
UNAC |
reponame_str |
UNAC-Institucional |
collection |
UNAC-Institucional |
repository.name.fl_str_mv |
Repositorio de la Universidad Nacional del Callao |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1844798051144695808 |
score |
13.2911825 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).