EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING

Descripción del Articulo

BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS...

Descripción completa

Detalles Bibliográficos
Autores: BLANCO-VICTORIO, DANIEL JOSÉ, LÓPEZ-RAMOS, ROXANA PATRICIA, BLANCO-RODRIGUEZ, JOHAN DANIEL, LÓPEZ-LUJÁN, NIEVES ASTERIA, LEÓN-UNTIVEROS, GINA FIORELLA, SICCHA-MACASSI, ANA LUCY
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/9847
Enlace del recurso:https://hdl.handle.net/20.500.12952/9847
Nivel de acceso:acceso abierto
Materia:ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING
https://purl.org/pe-repo/ocde/ford#5.03.01
id UNAC_43d6a82bd7f53a0c913a9bf8b65bfbed
oai_identifier_str oai:repositorio.unac.edu.pe:20.500.12952/9847
network_acronym_str UNAC
network_name_str UNAC-Institucional
repository_id_str 2593
spelling BLANCO-VICTORIO, DANIEL JOSÉLÓPEZ-RAMOS, ROXANA PATRICIABLANCO-RODRIGUEZ, JOHAN DANIELLÓPEZ-LUJÁN, NIEVES ASTERIALEÓN-UNTIVEROS, GINA FIORELLASICCHA-MACASSI, ANA LUCY2025-02-28T20:26:59Z2025-02-28T20:26:59Z202419895488https://hdl.handle.net/20.500.12952/984710.4317/jced.61514BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS AND THEIR RESPECTIVE PARENTS OR GUARDIANS TREATED AT A HOSPITAL IN ICA, PERU. THE DATABASE WITH SIGNIFICANT VARIABLES WAS LOADED INTO THE ORANGE DATA MINING SOFTWARE TO BE PROCESSED WITH DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING. TO EVALUATE THE PERFORMANCE OF THE PREDICTION MODELS, THE FOLLOWING INDICATORS WERE USED: PRECISION, RECALL, F1-SCORE AND ACCURACY. THE DISCRIMINATORY POWER OF THE MODEL WAS DETERMINED BY THE VALUE OF THE ROC CURVE. RESULTS: 76.88% OF THE CHILDREN EVALUATED HAD CAVITIES. THE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORK (NN) MODELS OBTAINED THE BEST PERFORMANCE VALUES, SHOWING SIMILAR VALUES OF ACCURACY, F1-SCORE AND RECALL (0.927, 0.950 AND 0.974; RESPECTIVELY). THE PROBABILITY OF CORRECTLY DISTINGUISHING A CHILD WITH ECC WAS 90.40% FOR THE SVM MODEL AND 86.68% FOR THE NN MODEL. CONCLUSIONS: THE MACHINE LEARNING-BASED CARIES PREDICTION MODELS WITH THE BEST PERFORMANCE WERE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORKS (NN). © MEDICINA ORAL S. L. C.I.F. B 96689336 - EISSN: 1989–5488application/pdfspaJOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRYinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNINGhttps://purl.org/pe-repo/ocde/ford#5.03.01EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNINGinfo:eu-repo/semantics/articlereponame:UNAC-Institucionalinstname:Universidad Nacional del Callaoinstacron:UNAC20.500.12952/9847oai:repositorio.unac.edu.pe:20.500.12952/98472025-02-28 15:26:59.709https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unac.edu.peRepositorio de la Universidad Nacional del Callaodspace-help@myu.edu
dc.title.es_PE.fl_str_mv EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
title EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
spellingShingle EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
BLANCO-VICTORIO, DANIEL JOSÉ
ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING
https://purl.org/pe-repo/ocde/ford#5.03.01
title_short EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
title_full EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
title_fullStr EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
title_full_unstemmed EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
title_sort EARLY CHILDHOOD CARIES (ECC) PREDICTION MODELS USING MACHINE LEARNING
author BLANCO-VICTORIO, DANIEL JOSÉ
author_facet BLANCO-VICTORIO, DANIEL JOSÉ
LÓPEZ-RAMOS, ROXANA PATRICIA
BLANCO-RODRIGUEZ, JOHAN DANIEL
LÓPEZ-LUJÁN, NIEVES ASTERIA
LEÓN-UNTIVEROS, GINA FIORELLA
SICCHA-MACASSI, ANA LUCY
author_role author
author2 LÓPEZ-RAMOS, ROXANA PATRICIA
BLANCO-RODRIGUEZ, JOHAN DANIEL
LÓPEZ-LUJÁN, NIEVES ASTERIA
LEÓN-UNTIVEROS, GINA FIORELLA
SICCHA-MACASSI, ANA LUCY
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv BLANCO-VICTORIO, DANIEL JOSÉ
LÓPEZ-RAMOS, ROXANA PATRICIA
BLANCO-RODRIGUEZ, JOHAN DANIEL
LÓPEZ-LUJÁN, NIEVES ASTERIA
LEÓN-UNTIVEROS, GINA FIORELLA
SICCHA-MACASSI, ANA LUCY
dc.subject.es_PE.fl_str_mv ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING
topic ARTIFICIAL INTELLIGENCE, CARIES, CARIES PREDICTION, EARLY CHILDHOOD CARIES, MACHINE LEARNING
https://purl.org/pe-repo/ocde/ford#5.03.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.03.01
description BACKGROUND: TO EVALUATE THE PERFORMANCE OF DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING TO PREDICT THE PRESENCE OF EARLY CHILDHOOD CARIES. MATERIAL AND METHODS: CROSS-SECTIONAL ANALYTICAL STUDY. THE SOCIODEMOGRAPHIC AND CLINICAL DATA USED CAME FROM A SAMPLE OF 186 CHILDREN AGED 3 TO 6 YEARS AND THEIR RESPECTIVE PARENTS OR GUARDIANS TREATED AT A HOSPITAL IN ICA, PERU. THE DATABASE WITH SIGNIFICANT VARIABLES WAS LOADED INTO THE ORANGE DATA MINING SOFTWARE TO BE PROCESSED WITH DIFFERENT PREDICTION MODELS BASED ON MACHINE LEARNING. TO EVALUATE THE PERFORMANCE OF THE PREDICTION MODELS, THE FOLLOWING INDICATORS WERE USED: PRECISION, RECALL, F1-SCORE AND ACCURACY. THE DISCRIMINATORY POWER OF THE MODEL WAS DETERMINED BY THE VALUE OF THE ROC CURVE. RESULTS: 76.88% OF THE CHILDREN EVALUATED HAD CAVITIES. THE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORK (NN) MODELS OBTAINED THE BEST PERFORMANCE VALUES, SHOWING SIMILAR VALUES OF ACCURACY, F1-SCORE AND RECALL (0.927, 0.950 AND 0.974; RESPECTIVELY). THE PROBABILITY OF CORRECTLY DISTINGUISHING A CHILD WITH ECC WAS 90.40% FOR THE SVM MODEL AND 86.68% FOR THE NN MODEL. CONCLUSIONS: THE MACHINE LEARNING-BASED CARIES PREDICTION MODELS WITH THE BEST PERFORMANCE WERE SUPPORT VECTOR MACHINE (SVM) AND NEURAL NETWORKS (NN). © MEDICINA ORAL S. L. C.I.F. B 96689336 - EISSN: 1989–5488
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-02-28T20:26:59Z
dc.date.available.none.fl_str_mv 2025-02-28T20:26:59Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 19895488
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12952/9847
dc.identifier.doi.none.fl_str_mv 10.4317/jced.61514
identifier_str_mv 19895488
10.4317/jced.61514
url https://hdl.handle.net/20.500.12952/9847
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv JOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRY
publisher.none.fl_str_mv JOURNAL OF CLINICAL AND EXPERIMENTAL DENTISTRY
dc.source.none.fl_str_mv reponame:UNAC-Institucional
instname:Universidad Nacional del Callao
instacron:UNAC
instname_str Universidad Nacional del Callao
instacron_str UNAC
institution UNAC
reponame_str UNAC-Institucional
collection UNAC-Institucional
repository.name.fl_str_mv Repositorio de la Universidad Nacional del Callao
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1844798051144695808
score 13.2911825
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).