Non-rigid 3D shape classification based on convolutional neural networks

Descripción del Articulo

Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detectio...

Descripción completa

Detalles Bibliográficos
Autores: Llerena Quenaya, Jan Franco, López Del Alamo, Cristian
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/32
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32
Nivel de acceso:acceso restringido
Materia:Research Subject Categories::TECHNOLOGY
id ULSA_fd8f0e862107d485343327588979317f
oai_identifier_str oai:repositorio.ulasalle.edu.pe:20.500.12953/32
network_acronym_str ULSA
network_name_str ULASALLE-Institucional
repository_id_str 3920
dc.title.es_ES.fl_str_mv Non-rigid 3D shape classification based on convolutional neural networks
title Non-rigid 3D shape classification based on convolutional neural networks
spellingShingle Non-rigid 3D shape classification based on convolutional neural networks
Llerena Quenaya, Jan Franco
Research Subject Categories::TECHNOLOGY
Research Subject Categories::TECHNOLOGY
title_short Non-rigid 3D shape classification based on convolutional neural networks
title_full Non-rigid 3D shape classification based on convolutional neural networks
title_fullStr Non-rigid 3D shape classification based on convolutional neural networks
title_full_unstemmed Non-rigid 3D shape classification based on convolutional neural networks
title_sort Non-rigid 3D shape classification based on convolutional neural networks
author Llerena Quenaya, Jan Franco
author_facet Llerena Quenaya, Jan Franco
López Del Alamo, Cristian
author_role author
author2 López Del Alamo, Cristian
author2_role author
dc.contributor.author.fl_str_mv Llerena Quenaya, Jan Franco
López Del Alamo, Cristian
dc.subject.es_ES.fl_str_mv Research Subject Categories::TECHNOLOGY
topic Research Subject Categories::TECHNOLOGY
Research Subject Categories::TECHNOLOGY
dc.subject.ocde.es_ES.fl_str_mv Research Subject Categories::TECHNOLOGY
description Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-21T17:24:32Z
dc.date.available.none.fl_str_mv 2018-11-21T17:24:32Z
dc.date.issued.fl_str_mv 2018-02-08
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_ES.fl_str_mv J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668
dc.identifier.isbn.none.fl_str_mv 978-1-5386-3734-0
dc.identifier.uri.none.fl_str_mv http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32
dc.identifier.journal.es_ES.fl_str_mv IEEE Latin American Conference on Computational Intelligence (LA-CCI)
dc.identifier.doi.es_ES.fl_str_mv 10.1109/LA-CCI.2017.8285693
identifier_str_mv J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668
978-1-5386-3734-0
IEEE Latin American Conference on Computational Intelligence (LA-CCI)
10.1109/LA-CCI.2017.8285693
url http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32
dc.language.iso.eng_US.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.publisher.es_ES.fl_str_mv Universidad La Salle
dc.source.es_ES.fl_str_mv Universidad La Salle
Repositorio institucional - ULASALLE
dc.source.none.fl_str_mv reponame:ULASALLE-Institucional
instname:Universidad La Salle
instacron:ULASALLE
instname_str Universidad La Salle
instacron_str ULASALLE
institution ULASALLE
reponame_str ULASALLE-Institucional
collection ULASALLE-Institucional
bitstream.url.fl_str_mv http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/1/link_articulo.txt
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/2/license.txt
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/3/link_articulo.txt.txt
bitstream.checksum.fl_str_mv db62853c3abba6df2ee3da1694446fc3
8a4605be74aa9ea9d79846c1fba20a33
8f364474751ca27c4ed60801b9b233cf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad La Salle
repository.mail.fl_str_mv repositorio@ulasalle.edu.pe
_version_ 1764532735674679296
spelling Llerena Quenaya, Jan FrancoLópez Del Alamo, Cristian2018-11-21T17:24:32Z2018-11-21T17:24:32Z2018-02-08J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668978-1-5386-3734-0http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI.2017.8285693Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.Doble ciegoengUniversidad La Salleinfo:eu-repo/semantics/restrictedAccessUniversidad La SalleRepositorio institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYNon-rigid 3D shape classification based on convolutional neural networksinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/1/link_articulo.txtdb62853c3abba6df2ee3da1694446fc3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/3/link_articulo.txt.txt8f364474751ca27c4ed60801b9b233cfMD5320.500.12953/32oai:repositorio.ulasalle.edu.pe:20.500.12953/322021-06-11 14:39:34.083Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.893769
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).