Non-rigid 3D shape classification based on convolutional neural networks
Descripción del Articulo
Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detectio...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad La Salle |
| Repositorio: | ULASALLE-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulasalle.edu.pe:20.500.12953/32 |
| Enlace del recurso: | http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32 |
| Nivel de acceso: | acceso restringido |
| Materia: | Research Subject Categories::TECHNOLOGY |
| id |
ULSA_fd8f0e862107d485343327588979317f |
|---|---|
| oai_identifier_str |
oai:repositorio.ulasalle.edu.pe:20.500.12953/32 |
| network_acronym_str |
ULSA |
| network_name_str |
ULASALLE-Institucional |
| repository_id_str |
3920 |
| dc.title.es_ES.fl_str_mv |
Non-rigid 3D shape classification based on convolutional neural networks |
| title |
Non-rigid 3D shape classification based on convolutional neural networks |
| spellingShingle |
Non-rigid 3D shape classification based on convolutional neural networks Llerena Quenaya, Jan Franco Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
| title_short |
Non-rigid 3D shape classification based on convolutional neural networks |
| title_full |
Non-rigid 3D shape classification based on convolutional neural networks |
| title_fullStr |
Non-rigid 3D shape classification based on convolutional neural networks |
| title_full_unstemmed |
Non-rigid 3D shape classification based on convolutional neural networks |
| title_sort |
Non-rigid 3D shape classification based on convolutional neural networks |
| author |
Llerena Quenaya, Jan Franco |
| author_facet |
Llerena Quenaya, Jan Franco López Del Alamo, Cristian |
| author_role |
author |
| author2 |
López Del Alamo, Cristian |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Llerena Quenaya, Jan Franco López Del Alamo, Cristian |
| dc.subject.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
| topic |
Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
| dc.subject.ocde.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
| description |
Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2018-11-21T17:24:32Z |
| dc.date.available.none.fl_str_mv |
2018-11-21T17:24:32Z |
| dc.date.issued.fl_str_mv |
2018-02-08 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_ES.fl_str_mv |
J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668 |
| dc.identifier.isbn.none.fl_str_mv |
978-1-5386-3734-0 |
| dc.identifier.uri.none.fl_str_mv |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32 |
| dc.identifier.journal.es_ES.fl_str_mv |
IEEE Latin American Conference on Computational Intelligence (LA-CCI) |
| dc.identifier.doi.es_ES.fl_str_mv |
10.1109/LA-CCI.2017.8285693 |
| identifier_str_mv |
J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668 978-1-5386-3734-0 IEEE Latin American Conference on Computational Intelligence (LA-CCI) 10.1109/LA-CCI.2017.8285693 |
| url |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32 |
| dc.language.iso.eng_US.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| eu_rights_str_mv |
restrictedAccess |
| dc.publisher.es_ES.fl_str_mv |
Universidad La Salle |
| dc.source.es_ES.fl_str_mv |
Universidad La Salle Repositorio institucional - ULASALLE |
| dc.source.none.fl_str_mv |
reponame:ULASALLE-Institucional instname:Universidad La Salle instacron:ULASALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
ULASALLE |
| institution |
ULASALLE |
| reponame_str |
ULASALLE-Institucional |
| collection |
ULASALLE-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/1/link_articulo.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/2/license.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/3/link_articulo.txt.txt |
| bitstream.checksum.fl_str_mv |
db62853c3abba6df2ee3da1694446fc3 8a4605be74aa9ea9d79846c1fba20a33 8f364474751ca27c4ed60801b9b233cf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad La Salle |
| repository.mail.fl_str_mv |
repositorio@ulasalle.edu.pe |
| _version_ |
1764532735674679296 |
| spelling |
Llerena Quenaya, Jan FrancoLópez Del Alamo, Cristian2018-11-21T17:24:32Z2018-11-21T17:24:32Z2018-02-08J. F. L. Quenaya and C. J. Lopez Del Alamo, "Non-rigid 3D shape classification based on convolutional neural networks," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, 2017, pp. 1-6. doi: 10.1109/LA-CCI.2017.8285693 keywords: {convolution;feature extraction;feedforward neural nets;image classification;learning (artificial intelligence);shape recognition;solid modelling;3D object classification;3D models;CNN training;deep learning techniques;nonrigid shapes;Nonrigid 3D shape classification;NonRigid Classification Benchmark SHREC 2011;convolutional neural network;spectral image;Three-dimensional displays;Solid modeling;Shape;Heating systems;Kernel;Computational modeling;Eigenvalues and eigenfunctions}, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8285693&isnumber=8285668978-1-5386-3734-0http://repositorio.ulasalle.edu.pe/handle/20.500.12953/32IEEE Latin American Conference on Computational Intelligence (LA-CCI)10.1109/LA-CCI.2017.8285693Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.Doble ciegoengUniversidad La Salleinfo:eu-repo/semantics/restrictedAccessUniversidad La SalleRepositorio institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYNon-rigid 3D shape classification based on convolutional neural networksinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/1/link_articulo.txtdb62853c3abba6df2ee3da1694446fc3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/32/3/link_articulo.txt.txt8f364474751ca27c4ed60801b9b233cfMD5320.500.12953/32oai:repositorio.ulasalle.edu.pe:20.500.12953/322021-06-11 14:39:34.083Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.893769 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).