Discovery of patterns in software metrics using clustering techniques

Descripción del Articulo

One mechanism for estimating software quality is through the use of metrics, which are functions that evaluates certain characteristics of the product quality development. A software product can be evaluated from different points of view, and in that sense, the results of the evaluations are numeric...

Descripción completa

Detalles Bibliográficos
Autores: López Del Alamo, Cristian, Aracena Pizarro, Diego, Valdivia Pinto, Ricardo
Formato: artículo
Fecha de Publicación:2012
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/61
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/61
Nivel de acceso:acceso restringido
Materia:Software metric ,data mining, clustering, Boot-strapping, Principal component analysis
Software metric
id ULSA_6113f0713de81ee873ebd8d5138a38f5
oai_identifier_str oai:repositorio.ulasalle.edu.pe:20.500.12953/61
network_acronym_str ULSA
network_name_str ULASALLE-Institucional
repository_id_str 3920
dc.title.es_ES.fl_str_mv Discovery of patterns in software metrics using clustering techniques
title Discovery of patterns in software metrics using clustering techniques
spellingShingle Discovery of patterns in software metrics using clustering techniques
López Del Alamo, Cristian
Software metric ,data mining, clustering, Boot-strapping, Principal component analysis
Software metric
title_short Discovery of patterns in software metrics using clustering techniques
title_full Discovery of patterns in software metrics using clustering techniques
title_fullStr Discovery of patterns in software metrics using clustering techniques
title_full_unstemmed Discovery of patterns in software metrics using clustering techniques
title_sort Discovery of patterns in software metrics using clustering techniques
author López Del Alamo, Cristian
author_facet López Del Alamo, Cristian
Aracena Pizarro, Diego
Valdivia Pinto, Ricardo
author_role author
author2 Aracena Pizarro, Diego
Valdivia Pinto, Ricardo
author2_role author
author
dc.contributor.author.fl_str_mv López Del Alamo, Cristian
Aracena Pizarro, Diego
Valdivia Pinto, Ricardo
dc.subject.es_ES.fl_str_mv Software metric ,data mining, clustering, Boot-strapping, Principal component analysis
topic Software metric ,data mining, clustering, Boot-strapping, Principal component analysis
Software metric
dc.subject.ocde.es_ES.fl_str_mv Software metric
description One mechanism for estimating software quality is through the use of metrics, which are functions that evaluates certain characteristics of the product quality development. A software product can be evaluated from different points of view, and in that sense, the results of the evaluations are numeric vectors, which together describe the quality of the software. This research uses data from NASA's open access which undergo a process of reducing the dimensionality by principal component analysis (PCA), then applied three clustering techniques and evaluates the best grouping using Rand Index. Finally, the top clusters are tested with regression to find the metrics that are related to the error of the Software. The results suggest that groups consisting of software modules whose code source have a higher average of blank lines, show a higher density of error. This could be interpreted as an indication of the order of implementation. On the other hand, shows the presence of a direct relationship between the number of errors in a module with the number of calls functions to other modules. The contribution of this work is related to the use of assessment techniques of clustering, dimensionality reduction, clustering algorithms and regression to discover patterns in software metrics a rigorous manner.
publishDate 2012
dc.date.accessioned.none.fl_str_mv 2019-04-01T21:33:43Z
dc.date.available.none.fl_str_mv 2019-04-01T21:33:43Z
dc.date.issued.fl_str_mv 2012-10-01
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_ES.fl_str_mv C. J. L. Del Alamo, D. A. Pizarro and R. V. Pinto, "Discovery of patterns in software metrics using clustering techniques," 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), Medellin, 2012, pp. 1-7.
dc.identifier.uri.none.fl_str_mv http://repositorio.ulasalle.edu.pe/handle/20.500.12953/61
dc.identifier.journal.es_ES.fl_str_mv IEEE
dc.identifier.doi.es_ES.fl_str_mv 10.1109/CLEI.2012.6427229
identifier_str_mv C. J. L. Del Alamo, D. A. Pizarro and R. V. Pinto, "Discovery of patterns in software metrics using clustering techniques," 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), Medellin, 2012, pp. 1-7.
IEEE
10.1109/CLEI.2012.6427229
url http://repositorio.ulasalle.edu.pe/handle/20.500.12953/61
dc.language.iso.eng_US.fl_str_mv eng
language eng
dc.relation.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.relation.uri.es_ES.fl_str_mv https://ieeexplore.ieee.org/document/6427229
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_ES.fl_str_mv application/msword
dc.publisher.es_ES.fl_str_mv 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)
dc.source.es_ES.fl_str_mv Repositorio Institucional - ULASALLE
dc.source.none.fl_str_mv reponame:ULASALLE-Institucional
instname:Universidad La Salle
instacron:ULASALLE
instname_str Universidad La Salle
instacron_str ULASALLE
institution ULASALLE
reponame_str ULASALLE-Institucional
collection ULASALLE-Institucional
bitstream.url.fl_str_mv http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/61/1/Discovery%20of%20patterns%20in%20software%20metrics%20using%20clustering%20techniques.docx
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/61/2/license.txt
bitstream.checksum.fl_str_mv 52314a4c3c3f6f9d2a6e53eba51fa9c3
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad La Salle
repository.mail.fl_str_mv repositorio@ulasalle.edu.pe
_version_ 1764532735848742912
spelling López Del Alamo, CristianAracena Pizarro, DiegoValdivia Pinto, Ricardo2019-04-01T21:33:43Z2019-04-01T21:33:43Z2012-10-01C. J. L. Del Alamo, D. A. Pizarro and R. V. Pinto, "Discovery of patterns in software metrics using clustering techniques," 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), Medellin, 2012, pp. 1-7.http://repositorio.ulasalle.edu.pe/handle/20.500.12953/61IEEE10.1109/CLEI.2012.6427229One mechanism for estimating software quality is through the use of metrics, which are functions that evaluates certain characteristics of the product quality development. A software product can be evaluated from different points of view, and in that sense, the results of the evaluations are numeric vectors, which together describe the quality of the software. This research uses data from NASA's open access which undergo a process of reducing the dimensionality by principal component analysis (PCA), then applied three clustering techniques and evaluates the best grouping using Rand Index. Finally, the top clusters are tested with regression to find the metrics that are related to the error of the Software. The results suggest that groups consisting of software modules whose code source have a higher average of blank lines, show a higher density of error. This could be interpreted as an indication of the order of implementation. On the other hand, shows the presence of a direct relationship between the number of errors in a module with the number of calls functions to other modules. The contribution of this work is related to the use of assessment techniques of clustering, dimensionality reduction, clustering algorithms and regression to discover patterns in software metrics a rigorous manner.Doble- Ciegoapplication/mswordeng2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)info:eu-repo/semantics/articlehttps://ieeexplore.ieee.org/document/6427229info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLESoftware metric ,data mining, clustering, Boot-strapping, Principal component analysisSoftware metricDiscovery of patterns in software metrics using clustering techniquesinfo:eu-repo/semantics/articleORIGINALDiscovery of patterns in software metrics using clustering techniques.docxDiscovery of patterns in software metrics using clustering techniques.docx"Artículo principal"application/vnd.openxmlformats-officedocument.wordprocessingml.document13035http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/61/1/Discovery%20of%20patterns%20in%20software%20metrics%20using%20clustering%20techniques.docx52314a4c3c3f6f9d2a6e53eba51fa9c3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/61/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12953/61oai:repositorio.ulasalle.edu.pe:20.500.12953/612021-06-11 14:39:34.446Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).