Stakeholders Classification System Based on Clustering Techniques

Descripción del Articulo

Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the...

Descripción completa

Detalles Bibliográficos
Autores: Pérez Vera, Yasiel, Bermudez Peña, Anié
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/33
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33
https://doi.org/10.1007/978-3-030-03928-8
Nivel de acceso:acceso restringido
Materia:Research Subject Categories::TECHNOLOGY
id ULSA_22b96294039e61a7327556c8992779b4
oai_identifier_str oai:repositorio.ulasalle.edu.pe:20.500.12953/33
network_acronym_str ULSA
network_name_str ULASALLE-Institucional
repository_id_str 3920
dc.title.es_ES.fl_str_mv Stakeholders Classification System Based on Clustering Techniques
title Stakeholders Classification System Based on Clustering Techniques
spellingShingle Stakeholders Classification System Based on Clustering Techniques
Pérez Vera, Yasiel
Research Subject Categories::TECHNOLOGY
Research Subject Categories::TECHNOLOGY
title_short Stakeholders Classification System Based on Clustering Techniques
title_full Stakeholders Classification System Based on Clustering Techniques
title_fullStr Stakeholders Classification System Based on Clustering Techniques
title_full_unstemmed Stakeholders Classification System Based on Clustering Techniques
title_sort Stakeholders Classification System Based on Clustering Techniques
author Pérez Vera, Yasiel
author_facet Pérez Vera, Yasiel
Bermudez Peña, Anié
author_role author
author2 Bermudez Peña, Anié
author2_role author
dc.contributor.author.fl_str_mv Pérez Vera, Yasiel
Bermudez Peña, Anié
dc.subject.es_ES.fl_str_mv Research Subject Categories::TECHNOLOGY
topic Research Subject Categories::TECHNOLOGY
Research Subject Categories::TECHNOLOGY
dc.subject.ocde.es_ES.fl_str_mv Research Subject Categories::TECHNOLOGY
description Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the classification and the making-decisions. The objective of this research is to propose a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal performs the automatic learning and the adjustment of the fuzzy inference system to classify the stakeholders executing two clustering algorithms: SBC and DENFIS. It examines the results of applying them in 10 iterations by calculating the measures: accuracy, false positive cases, false negative cases, mean square error and symmetric mean absolute percentage error. The best results are shown by the SBC algorithm. The fuzzy inference system for stakeholder’s classification generated improves the quality of this classification as well as the tools to support decision-making in organizations oriented to projects.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-21T17:30:00Z
dc.date.available.none.fl_str_mv 2018-11-21T17:30:00Z
dc.date.issued.fl_str_mv 2018-11-09
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_ES.fl_str_mv Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham
dc.identifier.isbn.none.fl_str_mv 978-3-030-03928-8
dc.identifier.uri.none.fl_str_mv http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33
dc.identifier.journal.es_ES.fl_str_mv Ibero-American Conference on Artificial Intelligence
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.1007/978-3-030-03928-8
identifier_str_mv Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham
978-3-030-03928-8
Ibero-American Conference on Artificial Intelligence
url http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33
https://doi.org/10.1007/978-3-030-03928-8
dc.language.iso.eng_US.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.publisher.es_ES.fl_str_mv Universidad La Salle
dc.source.es_ES.fl_str_mv Universidad La Salle
Repositorio institucional - ULASALLE
dc.source.none.fl_str_mv reponame:ULASALLE-Institucional
instname:Universidad La Salle
instacron:ULASALLE
instname_str Universidad La Salle
instacron_str ULASALLE
institution ULASALLE
reponame_str ULASALLE-Institucional
collection ULASALLE-Institucional
bitstream.url.fl_str_mv http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/1/link_articulo.txt
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/2/license.txt
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/3/link_articulo.txt.txt
bitstream.checksum.fl_str_mv 3f413a89798ef502e7daf056ee34cd19
8a4605be74aa9ea9d79846c1fba20a33
49d3da26c6f4d24dedacc3b85827f34a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad La Salle
repository.mail.fl_str_mv repositorio@ulasalle.edu.pe
_version_ 1764532734325161984
spelling Pérez Vera, YasielBermudez Peña, Anié2018-11-21T17:30:00Z2018-11-21T17:30:00Z2018-11-09Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham978-3-030-03928-8http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33Ibero-American Conference on Artificial Intelligencehttps://doi.org/10.1007/978-3-030-03928-8Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the classification and the making-decisions. The objective of this research is to propose a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal performs the automatic learning and the adjustment of the fuzzy inference system to classify the stakeholders executing two clustering algorithms: SBC and DENFIS. It examines the results of applying them in 10 iterations by calculating the measures: accuracy, false positive cases, false negative cases, mean square error and symmetric mean absolute percentage error. The best results are shown by the SBC algorithm. The fuzzy inference system for stakeholder’s classification generated improves the quality of this classification as well as the tools to support decision-making in organizations oriented to projects.Trabajo de investigaciónDoble ciegoengUniversidad La Salleinfo:eu-repo/semantics/restrictedAccessUniversidad La SalleRepositorio institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYStakeholders Classification System Based on Clustering Techniquesinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain70http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/1/link_articulo.txt3f413a89798ef502e7daf056ee34cd19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain70http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/3/link_articulo.txt.txt49d3da26c6f4d24dedacc3b85827f34aMD5320.500.12953/33oai:repositorio.ulasalle.edu.pe:20.500.12953/332021-06-11 14:39:34.05Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).