Stakeholders Classification System Based on Clustering Techniques
Descripción del Articulo
Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad La Salle |
| Repositorio: | ULASALLE-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulasalle.edu.pe:20.500.12953/33 |
| Enlace del recurso: | http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33 https://doi.org/10.1007/978-3-030-03928-8 |
| Nivel de acceso: | acceso restringido |
| Materia: | Research Subject Categories::TECHNOLOGY |
| id |
ULSA_22b96294039e61a7327556c8992779b4 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulasalle.edu.pe:20.500.12953/33 |
| network_acronym_str |
ULSA |
| network_name_str |
ULASALLE-Institucional |
| repository_id_str |
3920 |
| dc.title.es_ES.fl_str_mv |
Stakeholders Classification System Based on Clustering Techniques |
| title |
Stakeholders Classification System Based on Clustering Techniques |
| spellingShingle |
Stakeholders Classification System Based on Clustering Techniques Pérez Vera, Yasiel Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
| title_short |
Stakeholders Classification System Based on Clustering Techniques |
| title_full |
Stakeholders Classification System Based on Clustering Techniques |
| title_fullStr |
Stakeholders Classification System Based on Clustering Techniques |
| title_full_unstemmed |
Stakeholders Classification System Based on Clustering Techniques |
| title_sort |
Stakeholders Classification System Based on Clustering Techniques |
| author |
Pérez Vera, Yasiel |
| author_facet |
Pérez Vera, Yasiel Bermudez Peña, Anié |
| author_role |
author |
| author2 |
Bermudez Peña, Anié |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Pérez Vera, Yasiel Bermudez Peña, Anié |
| dc.subject.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
| topic |
Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
| dc.subject.ocde.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
| description |
Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the classification and the making-decisions. The objective of this research is to propose a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal performs the automatic learning and the adjustment of the fuzzy inference system to classify the stakeholders executing two clustering algorithms: SBC and DENFIS. It examines the results of applying them in 10 iterations by calculating the measures: accuracy, false positive cases, false negative cases, mean square error and symmetric mean absolute percentage error. The best results are shown by the SBC algorithm. The fuzzy inference system for stakeholder’s classification generated improves the quality of this classification as well as the tools to support decision-making in organizations oriented to projects. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2018-11-21T17:30:00Z |
| dc.date.available.none.fl_str_mv |
2018-11-21T17:30:00Z |
| dc.date.issued.fl_str_mv |
2018-11-09 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_ES.fl_str_mv |
Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham |
| dc.identifier.isbn.none.fl_str_mv |
978-3-030-03928-8 |
| dc.identifier.uri.none.fl_str_mv |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33 |
| dc.identifier.journal.es_ES.fl_str_mv |
Ibero-American Conference on Artificial Intelligence |
| dc.identifier.doi.es_ES.fl_str_mv |
https://doi.org/10.1007/978-3-030-03928-8 |
| identifier_str_mv |
Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham 978-3-030-03928-8 Ibero-American Conference on Artificial Intelligence |
| url |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33 https://doi.org/10.1007/978-3-030-03928-8 |
| dc.language.iso.eng_US.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| eu_rights_str_mv |
restrictedAccess |
| dc.publisher.es_ES.fl_str_mv |
Universidad La Salle |
| dc.source.es_ES.fl_str_mv |
Universidad La Salle Repositorio institucional - ULASALLE |
| dc.source.none.fl_str_mv |
reponame:ULASALLE-Institucional instname:Universidad La Salle instacron:ULASALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
ULASALLE |
| institution |
ULASALLE |
| reponame_str |
ULASALLE-Institucional |
| collection |
ULASALLE-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/1/link_articulo.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/2/license.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/3/link_articulo.txt.txt |
| bitstream.checksum.fl_str_mv |
3f413a89798ef502e7daf056ee34cd19 8a4605be74aa9ea9d79846c1fba20a33 49d3da26c6f4d24dedacc3b85827f34a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad La Salle |
| repository.mail.fl_str_mv |
repositorio@ulasalle.edu.pe |
| _version_ |
1764532734325161984 |
| spelling |
Pérez Vera, YasielBermudez Peña, Anié2018-11-21T17:30:00Z2018-11-21T17:30:00Z2018-11-09Pérez Vera Y., Bermudez Peña A. (2018) Stakeholders Classification System Based on Clustering Techniques. In: Simari G., Fermé E., Gutiérrez Segura F., Rodríguez Melquiades J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science, vol 11238. Springer, Cham978-3-030-03928-8http://repositorio.ulasalle.edu.pe/handle/20.500.12953/33Ibero-American Conference on Artificial Intelligencehttps://doi.org/10.1007/978-3-030-03928-8Stakeholder classification is carried out by project managers using methods such as interviews with experts, brainstorming and checklists. These methods are carried out manually and present a subjective character as they depend on the appreciation of the interviewees. It affects the accuracy of the classification and the making-decisions. The objective of this research is to propose a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal performs the automatic learning and the adjustment of the fuzzy inference system to classify the stakeholders executing two clustering algorithms: SBC and DENFIS. It examines the results of applying them in 10 iterations by calculating the measures: accuracy, false positive cases, false negative cases, mean square error and symmetric mean absolute percentage error. The best results are shown by the SBC algorithm. The fuzzy inference system for stakeholder’s classification generated improves the quality of this classification as well as the tools to support decision-making in organizations oriented to projects.Trabajo de investigaciónDoble ciegoengUniversidad La Salleinfo:eu-repo/semantics/restrictedAccessUniversidad La SalleRepositorio institucional - ULASALLEreponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYStakeholders Classification System Based on Clustering Techniquesinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain70http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/1/link_articulo.txt3f413a89798ef502e7daf056ee34cd19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain70http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/33/3/link_articulo.txt.txt49d3da26c6f4d24dedacc3b85827f34aMD5320.500.12953/33oai:repositorio.ulasalle.edu.pe:20.500.12953/332021-06-11 14:39:34.05Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.987529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).