A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree
Descripción del Articulo
High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association b...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad La Salle |
Repositorio: | ULASALLE-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulasalle.edu.pe:20.500.12953/25 |
Enlace del recurso: | http://repositorio.ulasalle.edu.pe/handle/20.500.12953/25 |
Nivel de acceso: | acceso restringido |
Materia: | Research Subject Categories::TECHNOLOGY |
id |
ULSA_041d495c0e1156a0a608fe996d865c86 |
---|---|
oai_identifier_str |
oai:repositorio.ulasalle.edu.pe:20.500.12953/25 |
network_acronym_str |
ULSA |
network_name_str |
ULASALLE-Institucional |
repository_id_str |
3920 |
dc.title.es_ES.fl_str_mv |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
title |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
spellingShingle |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree Rodriguez Urquiaga, Roberto Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
title_short |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
title_full |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
title_fullStr |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
title_full_unstemmed |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
title_sort |
A visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree |
author |
Rodriguez Urquiaga, Roberto |
author_facet |
Rodriguez Urquiaga, Roberto Cuadros Valdivia, Ana María Alfonte Zapana, Reynaldo |
author_role |
author |
author2 |
Cuadros Valdivia, Ana María Alfonte Zapana, Reynaldo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rodriguez Urquiaga, Roberto Cuadros Valdivia, Ana María Alfonte Zapana, Reynaldo |
dc.subject.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
topic |
Research Subject Categories::TECHNOLOGY Research Subject Categories::TECHNOLOGY |
dc.subject.ocde.es_ES.fl_str_mv |
Research Subject Categories::TECHNOLOGY |
description |
High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-21T16:42:45Z |
dc.date.available.none.fl_str_mv |
2018-11-21T16:42:45Z |
dc.date.issued.fl_str_mv |
2018-06-21 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.isbn.none.fl_str_mv |
978-1-5386-4662-5 |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/25 |
dc.identifier.journal.es_ES.fl_str_mv |
2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) |
dc.identifier.doi.es_ES.fl_str_mv |
10.1109/ISSPIT.2017.8388663 |
identifier_str_mv |
978-1-5386-4662-5 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) 10.1109/ISSPIT.2017.8388663 |
url |
http://repositorio.ulasalle.edu.pe/handle/20.500.12953/25 |
dc.language.iso.eng_US.fl_str_mv |
eng |
language |
eng |
dc.relation.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.eng_US.fl_str_mv |
application/msword |
dc.publisher.es_ES.fl_str_mv |
Universidad La Salle |
dc.source.es_ES.fl_str_mv |
Universidad La Salle |
dc.source.none.fl_str_mv |
reponame:ULASALLE-Institucional instname:Universidad La Salle instacron:ULASALLE |
instname_str |
Universidad La Salle |
instacron_str |
ULASALLE |
institution |
ULASALLE |
reponame_str |
ULASALLE-Institucional |
collection |
ULASALLE-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/1/link_articulo.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/2/license.txt http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/3/link_articulo.txt.txt |
bitstream.checksum.fl_str_mv |
84e543aff5b998b5b498f5b8eeff87f4 8a4605be74aa9ea9d79846c1fba20a33 3a604ffac0b5570258ef76234644bf26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad La Salle |
repository.mail.fl_str_mv |
repositorio@ulasalle.edu.pe |
_version_ |
1764532735788974080 |
spelling |
Rodriguez Urquiaga, RobertoCuadros Valdivia, Ana MaríaAlfonte Zapana, Reynaldo2018-11-21T16:42:45Z2018-11-21T16:42:45Z2018-06-21978-1-5386-4662-5http://repositorio.ulasalle.edu.pe/handle/20.500.12953/252017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)10.1109/ISSPIT.2017.8388663High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.Trabajo de investigaciónDoble ciegoapplication/mswordengUniversidad La Salleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccessUniversidad La Sallereponame:ULASALLE-Institucionalinstname:Universidad La Salleinstacron:ULASALLEResearch Subject Categories::TECHNOLOGYResearch Subject Categories::TECHNOLOGYA visual analytics approach for exploration of high-dimensional time series based on neighbor-joining treeinfo:eu-repo/semantics/articleORIGINALlink_articulo.txtlink_articulo.txttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/1/link_articulo.txt84e543aff5b998b5b498f5b8eeff87f4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTlink_articulo.txt.txtlink_articulo.txt.txtExtracted texttext/plain45http://repositorio.ulasalle.edu.pe/bitstream/20.500.12953/25/3/link_articulo.txt.txt3a604ffac0b5570258ef76234644bf26MD5320.500.12953/25oai:repositorio.ulasalle.edu.pe:20.500.12953/252021-06-11 14:39:34.33Repositorio Institucional de la Universidad La Sallerepositorio@ulasalle.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).