Análisis predictivo basado en redes neuronales no supervisadas aplicando algoritmo de kmedias y crisp-dm para pronóstico de riesgo de morosidad de los alumnos en la Universidad Peruana Unión

Descripción del Articulo

El presente trabajo de investigación de tesis desarrolla los indicadores de gerencia financiera, capturados de la necesidad de los clientes, éstos son modelados y desarrollados a través de las tecnologías de BA (Business Analytics), las cuales tienen el objetivo de mostrar los riesgos de morosidad....

Descripción completa

Detalles Bibliográficos
Autor: Pacco Palomino, Rodolfo
Formato: tesis de maestría
Fecha de Publicación:2015
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/203
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/203
Nivel de acceso:acceso abierto
Materia:Riesgos de morosidad
Redes neuronales
La metodología CRISP-DM
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El presente trabajo de investigación de tesis desarrolla los indicadores de gerencia financiera, capturados de la necesidad de los clientes, éstos son modelados y desarrollados a través de las tecnologías de BA (Business Analytics), las cuales tienen el objetivo de mostrar los riesgos de morosidad. Este proyecto de investigación se ha desarrollado basado sobre redes neuronales y la metodología CRISP-DM, para implementar e implantar el proyecto de BA (Business Analytics). Se ha hecho una optimización del ciclo de vida de la metodología de CRISP-DM, según sus fases conocidas: comprensión del negocio, comprensión de los datos, preparación de datos, modelado, evaluación y despliegue. El caso de estudio es el riesgo de morosidad de los alumnos de la Universidad Peruana Unión (UPeU), formado por cinco facultades: Ingeniería y Arquitectura, Ciencias de la Salud, Ciencias Empresariales, Ciencias Humanas y Educación y Teología. Para este estudio, el principal responsable del negocio es la Universidad Peruana Unión (UPeU). En este proyecto de investigación de tesis se decide la herramienta de BI de Microsoft para el desarrollo de la solución y se elige la herramienta de Analysis Services. Como la solución de inteligencia de negocios se diseña los modelos de clúster, para la toma de decisión, utilizando las herramientas integration services para realizar ETL (Extraction Transform and Load). En esta investigación se explica ampliamente que la implementación de un proyecto, utilizando la herramienta analysis services, consiste diferentes etapas de BI, desde el análisis de datos hasta los reportes de modelos de clasificación. Este proyecto servirá como base para elaborar proyectos de esta naturaleza o similares.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).