Redes neuronales artificiales para la predicción de propiedades mecánicas de los suelos

Descripción del Articulo

En proyectos viales es importante obtener un correcto valor de las propiedades mecánicas de los suelos, dado que estos llegan a tener una gran in-fluencia en los diseños del pavimento. En mención a esto, realizar ensayos por métodos tradicionales implica un alto costo, tiempo y disponibilidad de lab...

Descripción completa

Detalles Bibliográficos
Autores: Castillo Delgado, Lusdali, Porta Maldonado, Daniel Enrique
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/4946
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/4946
Nivel de acceso:acceso abierto
Materia:Redes neuronales artificiales (RNA)
Algoritmos predictivos
Máxima densidad seca (MDS)
Óptimo contenido de humedad (OCH)
Valor de soporte california (CBR)
http://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:En proyectos viales es importante obtener un correcto valor de las propiedades mecánicas de los suelos, dado que estos llegan a tener una gran in-fluencia en los diseños del pavimento. En mención a esto, realizar ensayos por métodos tradicionales implica un alto costo, tiempo y disponibilidad de labora-torio, en tal sentido, utilizar modelos predictores toma significancia e importancia para predecir dichos valores. El objetivo de la investigación fue predecir propie-dades mecánicas de los suelos usando un software basado en algoritmos de redes neuronales artificiales. En este artículo se recopilo una base de datos de 289 valores de ensayos granu-lométricos, límites de consistencia, máxima densidad seca, óptimo contenido de humedad y CBR. La metodología corresponde a un enfoque cuantitativo, de tipo aplicada, nivel correlacional y diseño no experimental-transversal. En conclusión, se obtuvieron 4 modelos predictivos con el software Neural Tools, los cuales son: el modelo GRNN para la MDS, con un R2 del 75% y un RMS de 0.09%, modelo GRNN para el OCH, con un R2 de 78% y un RMS de 1.67%, modelo MLFN 2 nodos para el CBR95%MDS, con un R2 de 79% y un RMS de 5.42%, modelo MLFN 2 nodos para el CBR100%MDS, con un R2 de 82% y un RMS de 6.93%. Además, se realizó una comparación de valores obtenidos en el laboratorio de suelos vs RNA, donde los resultados muestran una variación mínima de 0.002% en la MDS, 0.06% en el OCH, 0.03% en el CBR 95%MDS y 0.04% en el CBR100%MDS.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).