Exportación Completada — 

Control predictivo basado en Data Driven para una planta de neutralización de pH

Descripción del Articulo

El presente trabajo tiene por objetivo diseñar un Model Predictive Control (MPC), usando técnicas Data-driven aplicando la identificación de una planta de neutralización de pH basados en la estructura de un modelo Wiener con el fin de poder controlar la concentración de pH. El modelo Wiener consiste...

Descripción completa

Detalles Bibliográficos
Autores: Cueva Chuquihuanca, Luis Ángel, Trauco Trelles, Miguel Abraham, Urbina Calderón, Anthony Aldair, Vásquez Siancas, Williams Manuel
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad de Piura
Repositorio:UDEP-Institucional
Lenguaje:español
OAI Identifier:oai:pirhua.udep.edu.pe:11042/5205
Enlace del recurso:https://hdl.handle.net/11042/5205
Nivel de acceso:acceso abierto
Materia:Control predictivo -- Aplicación
Modelos matemáticos -- Investigaciones
Ingeniería de control -- Investigaciones
629.8
https://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:El presente trabajo tiene por objetivo diseñar un Model Predictive Control (MPC), usando técnicas Data-driven aplicando la identificación de una planta de neutralización de pH basados en la estructura de un modelo Wiener con el fin de poder controlar la concentración de pH. El modelo Wiener consiste en desacoplar al proceso en un bloque lineal seguido de uno no lineal, ambos bloques se identificaron mediante técnicas de espacio de estados y Extreme Learning Machine (ELM) respectivamente, con la ayuda del software MatLab, consiguiendo FITs de 76.33% y 94.82%, luego se invierte el bloque no lineal para poder obtener al modelo linealizado. El FIT para el bloque no lineal inverso fue de 95.18%. Al implementar el MPC se obtiene un seguimiento óptimo de la variable de salida tanto para grandes variaciones de pH como para disturbios del caudal ácido usado, además, debe resaltarse que el MPC hace una optimización de la variable manipulable, optimizando de ese modo la energía de la que se dispone, a diferencia de un control PID, con el cual se hace la comparación. Se concluye que el sistema de control no tiene una dependencia directa del modelo Wiener identificado, debido a que los pesos obtenidos para el bloque no lineal son totalmente independientes del modelo no lineal inverso, por ello, la atención debe estar centrada en identificar correctamente este último.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).