Machine learning en la mejora del proceso de selección del personal administrativo de la Corte Superior de Justicia de Lima, 2020

Descripción del Articulo

En esta investigación se determinó que el Machine Learning mejora el proceso de selección del personal administrativo de la Corte Superior de Justicia de Lima, 2020. El estudio se realizó a raíz de que los procesos de selección tradicionales generan puestos cancelados o desiertos. Se desarrolló una...

Descripción completa

Detalles Bibliográficos
Autor: Coronel Castillo, Eric Gustavo
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Universidad Cesar Vallejo
Repositorio:UCV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucv.edu.pe:20.500.12692/61903
Enlace del recurso:https://hdl.handle.net/20.500.12692/61903
Nivel de acceso:acceso abierto
Materia:Selección de personal
Personal administrativo
Inteligencia artificial
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:En esta investigación se determinó que el Machine Learning mejora el proceso de selección del personal administrativo de la Corte Superior de Justicia de Lima, 2020. El estudio se realizó a raíz de que los procesos de selección tradicionales generan puestos cancelados o desiertos. Se desarrolló una investigación con enfoque cuantitativo en una muestra de 300 observaciones, bajo el supuesto de que machine learning mejora el proceso de selección del personal administrativo, se eligió un diseño cuasi experimental, donde el proceso de selección se cuantificó con tres indicadores, índice de personal postulante, índice de evaluación curricular, e índice de contratación, a través de un pretest y un postest, las observaciones se obtuvieron mediante fichas que fueron validadas mediante juicio de expertos y la confiabilidad se valoró mediante el test alfa de Cronbach, cuyas valoraciones superaron el 70%. Los resultados se determinaron mediante el test de Wilcoxon que permitió la comparación del pretest y postest, cuyo contraste fue significativo en cada indicador, y se determinó que los indicadores mejoran en 35% en el índice de personal postulante, 17% en el índice de evaluación curricular, y 2% en el índice de contratación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).