Análisis comparativo de técnicas de machine learning sobre el método de muestreo para la predicción de diabetes

Descripción del Articulo

En siguiente trabajo se realizó con el objeto de aplicar un análisis comparativo de técnicas de Machine Learning sobre el método de muestreo para la predicción de la diabetes. Para esto, se realizó una investigación usando un método de enfoque cuantitativo, aplicado a los datos de un repositorio de...

Descripción completa

Detalles Bibliográficos
Autores: Chira Bohorquez, Piero Alejandro, Rivera Munive, Kevin
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Cesar Vallejo
Repositorio:UCV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucv.edu.pe:20.500.12692/133747
Enlace del recurso:https://hdl.handle.net/20.500.12692/133747
Nivel de acceso:acceso abierto
Materia:Machine learning
Métricas de precisión
Diabetes
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:En siguiente trabajo se realizó con el objeto de aplicar un análisis comparativo de técnicas de Machine Learning sobre el método de muestreo para la predicción de la diabetes. Para esto, se realizó una investigación usando un método de enfoque cuantitativo, aplicado a los datos de un repositorio de base de datos de Kaggle de medición de factores de diabetes en mujeres de al menos 21 años de herencia indígena Pima, la misma que consta de 768 ítems, las mismas que han sido considerados como población para posteriormente ser usada como muestra. Asimismo, el estudio es de tipo aplicada, con un diseño de investigación experimental de tipo pre-experimental de un solo grupo, ya que luego de aplicar las técnicas de Machine Learning a través de métricas como rendimiento; exactitud, precisión, especificidad, sensibilidad y F1 Score, se podrá verificar los resultados y realizar la medición. Para ello, se consideró aplicar la metodología Knowledge Discovery in Databases (KDD), la misma que está divida de 5 etapas, la primera comienza con la selección de datos, la segunda y tercera etapa, con el preprocesamiento y transformación de los datos, en la cuarta etapa se efectúa la minería de datos, aplicado a la presente investigación, haciendo el entrenamiento en 6 algoritmos de aprendizaje automático Árbol de decisiones (DT), Random Forest (RF), máquina de vectores de soporte (SVM), Gradient Boosting Machine (GBM), K-vecino más cercano (K-NN) y Redes Neuronales (ANN), basando los resultado en los mejores hiperparámetros y por último en la quinta etapa, se diseñó un software para apoyar en la detección de la diabetes en función a 5 métricas, obteniendo los resultados en base a 6 algoritmos. Como resultado se obtuvo que el modelo Random Forest (RF), Gradient Boosting Machine (GBM) y Árbol de Decisiones (DT) superaron a los demás modelos, el modelo Random Forest obtuvo un 79,22%, en cuanto a la métrica exactitud, mientras que el modelo GMB obtuvo un 75,32%, de exactitud, del mismo modo el árbol de decisiones (DT) obtuvo un 74.09% en cuanto a la precisión. Por otro lado, el KNN, ANN y SVM fueron los modelos de menor rendimiento en la mayoría de las cinco métricas, KNN con un 74.02%, ANN con un 63.63 % y SVM con un 73.10% de exactitud. Finalmente, en función a los resultados obtenidos por las métricas evaluadas se puede afirmar que el uso de Técnicas de Machine Learning para la predicción de la diabetes, son favorables para el sector salud.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).