Machine learning para predecir la eficiencia energética en los edificios residenciales
Descripción del Articulo
La presente investigación tuvo como objetivo evaluar la eficacia del machine learning para la predicción de la eficiencia energética en edificios residenciales, siendo de tipo aplicada, pre-experimental y de diseño experimental; la población estuvo conformada por 768 edificios residenciales de Lima....
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Cesar Vallejo |
Repositorio: | UCV-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ucv.edu.pe:20.500.12692/141564 |
Enlace del recurso: | https://hdl.handle.net/20.500.12692/141564 |
Nivel de acceso: | acceso abierto |
Materia: | Sistema inteligente Machine learning Eficiencia energética https://purl.org/pe-repo/ocde/ford#2.03.01 |
Sumario: | La presente investigación tuvo como objetivo evaluar la eficacia del machine learning para la predicción de la eficiencia energética en edificios residenciales, siendo de tipo aplicada, pre-experimental y de diseño experimental; la población estuvo conformada por 768 edificios residenciales de Lima. La técnica de recolección de datos fue el análisis documental. Los resultados muestran que en “Carga de calefacción”, Extreme Gradient Boosting obtuvo los mejores valores de R2 Score con 99.85%, Mean absolute error con 0.23, Mean squared error con 0.16, Root mean squared error con 0.40, Mean absolute percentage error con 1.12% y Root mean squared log error con 0.02. Sin embargo, Árbol de decisión, Random Forest y Extreme Gradient Boosting alcanzaron un Mean squared log error de 0.00. Asimismo, en “Carga de enfriamiento”, Extreme Gradient Boosting logró los mejores valores de R2 Score con 99.55%, Mean absolute error con 0.44, Mean squared error con 0.42, Root mean squared error con 0.65, Mean absolute percentage error con 1.70% y Root mean squared log error con 0.02. Pero, Random Forest y Extreme Gradient Boosting lograron un Mean squared log error de 0.00053. Concluyendo que Extreme Gradient Boosting fue el mejor algoritmo para predecir la eficiencia energética en los edificios residenciales. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).