Segmentation of multi-structures in cardiac MRI using deep learning
Descripción del Articulo
The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/16852 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/16852 |
| Nivel de acceso: | acceso abierto |
| Materia: | Deep Learning Cardiac Magnetic Resonance Imaging Image Segmentation Medical Imaging https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_a92879150df850a683e0ee72dd229a52 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/16852 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Segmentation of multi-structures in cardiac MRI using deep learning |
| title |
Segmentation of multi-structures in cardiac MRI using deep learning |
| spellingShingle |
Segmentation of multi-structures in cardiac MRI using deep learning Gutierrez Castilla, Nicolas Deep Learning Cardiac Magnetic Resonance Imaging Image Segmentation Medical Imaging https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Segmentation of multi-structures in cardiac MRI using deep learning |
| title_full |
Segmentation of multi-structures in cardiac MRI using deep learning |
| title_fullStr |
Segmentation of multi-structures in cardiac MRI using deep learning |
| title_full_unstemmed |
Segmentation of multi-structures in cardiac MRI using deep learning |
| title_sort |
Segmentation of multi-structures in cardiac MRI using deep learning |
| author |
Gutierrez Castilla, Nicolas |
| author_facet |
Gutierrez Castilla, Nicolas |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Montoya Zegarra, Javier Alexander |
| dc.contributor.author.fl_str_mv |
Gutierrez Castilla, Nicolas |
| dc.subject.es_PE.fl_str_mv |
Deep Learning Cardiac Magnetic Resonance Imaging Image Segmentation Medical Imaging |
| topic |
Deep Learning Cardiac Magnetic Resonance Imaging Image Segmentation Medical Imaging https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient’s health. However, the examination of these stacks, often based on the delineation of the heart structures, is a tedious and an error prone task due to inter- and intra-variability in the manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net (Ronneberger et al., 2015), have demonstrated to be very effective and robust architectures for medical image segmentation. In this work, we propose to use long-range skip connections on the decoder-part of the architecture to incorporate multi-context information onto the predicted segmentation masks and to improve the generalization of the models (see Figure 1). This new module is named Dense-Decoder module and can be easily added to state-of-the-art encoder-decoder architectures, such as the U-Net, with almost no extra additional parameters allowing the model’s size to remain constant. To evaluate the benefits of our module, we performed experiments on two challenging cardiac segmentation datasets, namely the ACDC (Bernard et al., 2018) and the LVSC (Radau et al., 2009) heart segmentation challenges. Experiments performed on both datasets demonstrate that our method leads to an improvement on both the total Average Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2021-09-23T03:22:18Z |
| dc.date.available.none.fl_str_mv |
2021-09-23T03:22:18Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1073412 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/16852 |
| identifier_str_mv |
1073412 |
| url |
https://hdl.handle.net/20.500.12590/16852 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Católica San Pablo Repositorio Institucional - UCSP |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/17e6d7cb-9db6-4365-81e4-03d1dee70f1a/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d63720cd-83cd-4d2c-8196-182e5eeb3819/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5e27074b-0eaa-4e09-8c2e-77c2939d03cd/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ac4a4c70-ff47-40c8-ba2f-e7695aa40ce7/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8a6fa2770537b494b675af553fb77f2f a14b0550e32dd6cd04a014205668c0cc 757cbe34e2f25dc18a06e3638aefa44d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053039327117312 |
| spelling |
Montoya Zegarra, Javier AlexanderGutierrez Castilla, Nicolas2021-09-23T03:22:18Z2021-09-23T03:22:18Z20201073412https://hdl.handle.net/20.500.12590/16852The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient’s health. However, the examination of these stacks, often based on the delineation of the heart structures, is a tedious and an error prone task due to inter- and intra-variability in the manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net (Ronneberger et al., 2015), have demonstrated to be very effective and robust architectures for medical image segmentation. In this work, we propose to use long-range skip connections on the decoder-part of the architecture to incorporate multi-context information onto the predicted segmentation masks and to improve the generalization of the models (see Figure 1). This new module is named Dense-Decoder module and can be easily added to state-of-the-art encoder-decoder architectures, such as the U-Net, with almost no extra additional parameters allowing the model’s size to remain constant. To evaluate the benefits of our module, we performed experiments on two challenging cardiac segmentation datasets, namely the ACDC (Bernard et al., 2018) and the LVSC (Radau et al., 2009) heart segmentation challenges. Experiments performed on both datasets demonstrate that our method leads to an improvement on both the total Average Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPDeep LearningCardiac Magnetic Resonance ImagingImage SegmentationMedical Imaginghttps://purl.org/pe-repo/ocde/ford#1.02.01Segmentation of multi-structures in cardiac MRI using deep learninginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación73637385https://orcid.org/0000-0002-3652-195441312254https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Joao Paulo PapaAlexander Xavier FalcaoJosé Eduardo Ochoa LunaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/17e6d7cb-9db6-4365-81e4-03d1dee70f1a/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALGUTIERREZ_CASTILLA_NIC_CAR.pdfGUTIERREZ_CASTILLA_NIC_CAR.pdfapplication/pdf7070893https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d63720cd-83cd-4d2c-8196-182e5eeb3819/download8a6fa2770537b494b675af553fb77f2fMD53TEXTGUTIERREZ_CASTILLA_NIC_CAR.pdf.txtGUTIERREZ_CASTILLA_NIC_CAR.pdf.txtExtracted texttext/plain189705https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5e27074b-0eaa-4e09-8c2e-77c2939d03cd/downloada14b0550e32dd6cd04a014205668c0ccMD54THUMBNAILGUTIERREZ_CASTILLA_NIC_CAR.pdf.jpgGUTIERREZ_CASTILLA_NIC_CAR.pdf.jpgGenerated Thumbnailimage/jpeg4269https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ac4a4c70-ff47-40c8-ba2f-e7695aa40ce7/download757cbe34e2f25dc18a06e3638aefa44dMD5520.500.12590/16852oai:repositorio.ucsp.edu.pe:20.500.12590/168522023-10-31 14:16:31.47https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.459123 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).