Segmentation of multi-structures in cardiac MRI using deep learning

Descripción del Articulo

The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for...

Descripción completa

Detalles Bibliográficos
Autor: Gutierrez Castilla, Nicolas
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16852
Enlace del recurso:https://hdl.handle.net/20.500.12590/16852
Nivel de acceso:acceso abierto
Materia:Deep Learning
Cardiac Magnetic Resonance Imaging
Image Segmentation
Medical Imaging
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_a92879150df850a683e0ee72dd229a52
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/16852
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Segmentation of multi-structures in cardiac MRI using deep learning
title Segmentation of multi-structures in cardiac MRI using deep learning
spellingShingle Segmentation of multi-structures in cardiac MRI using deep learning
Gutierrez Castilla, Nicolas
Deep Learning
Cardiac Magnetic Resonance Imaging
Image Segmentation
Medical Imaging
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Segmentation of multi-structures in cardiac MRI using deep learning
title_full Segmentation of multi-structures in cardiac MRI using deep learning
title_fullStr Segmentation of multi-structures in cardiac MRI using deep learning
title_full_unstemmed Segmentation of multi-structures in cardiac MRI using deep learning
title_sort Segmentation of multi-structures in cardiac MRI using deep learning
author Gutierrez Castilla, Nicolas
author_facet Gutierrez Castilla, Nicolas
author_role author
dc.contributor.advisor.fl_str_mv Montoya Zegarra, Javier Alexander
dc.contributor.author.fl_str_mv Gutierrez Castilla, Nicolas
dc.subject.es_PE.fl_str_mv Deep Learning
Cardiac Magnetic Resonance Imaging
Image Segmentation
Medical Imaging
topic Deep Learning
Cardiac Magnetic Resonance Imaging
Image Segmentation
Medical Imaging
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient’s health. However, the examination of these stacks, often based on the delineation of the heart structures, is a tedious and an error prone task due to inter- and intra-variability in the manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net (Ronneberger et al., 2015), have demonstrated to be very effective and robust architectures for medical image segmentation. In this work, we propose to use long-range skip connections on the decoder-part of the architecture to incorporate multi-context information onto the predicted segmentation masks and to improve the generalization of the models (see Figure 1). This new module is named Dense-Decoder module and can be easily added to state-of-the-art encoder-decoder architectures, such as the U-Net, with almost no extra additional parameters allowing the model’s size to remain constant. To evaluate the benefits of our module, we performed experiments on two challenging cardiac segmentation datasets, namely the ACDC (Bernard et al., 2018) and the LVSC (Radau et al., 2009) heart segmentation challenges. Experiments performed on both datasets demonstrate that our method leads to an improvement on both the total Average Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-09-23T03:22:18Z
dc.date.available.none.fl_str_mv 2021-09-23T03:22:18Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1073412
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/16852
identifier_str_mv 1073412
url https://hdl.handle.net/20.500.12590/16852
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/17e6d7cb-9db6-4365-81e4-03d1dee70f1a/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d63720cd-83cd-4d2c-8196-182e5eeb3819/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5e27074b-0eaa-4e09-8c2e-77c2939d03cd/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ac4a4c70-ff47-40c8-ba2f-e7695aa40ce7/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8a6fa2770537b494b675af553fb77f2f
a14b0550e32dd6cd04a014205668c0cc
757cbe34e2f25dc18a06e3638aefa44d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053039327117312
spelling Montoya Zegarra, Javier AlexanderGutierrez Castilla, Nicolas2021-09-23T03:22:18Z2021-09-23T03:22:18Z20201073412https://hdl.handle.net/20.500.12590/16852The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient’s health. However, the examination of these stacks, often based on the delineation of the heart structures, is a tedious and an error prone task due to inter- and intra-variability in the manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net (Ronneberger et al., 2015), have demonstrated to be very effective and robust architectures for medical image segmentation. In this work, we propose to use long-range skip connections on the decoder-part of the architecture to incorporate multi-context information onto the predicted segmentation masks and to improve the generalization of the models (see Figure 1). This new module is named Dense-Decoder module and can be easily added to state-of-the-art encoder-decoder architectures, such as the U-Net, with almost no extra additional parameters allowing the model’s size to remain constant. To evaluate the benefits of our module, we performed experiments on two challenging cardiac segmentation datasets, namely the ACDC (Bernard et al., 2018) and the LVSC (Radau et al., 2009) heart segmentation challenges. Experiments performed on both datasets demonstrate that our method leads to an improvement on both the total Average Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPDeep LearningCardiac Magnetic Resonance ImagingImage SegmentationMedical Imaginghttps://purl.org/pe-repo/ocde/ford#1.02.01Segmentation of multi-structures in cardiac MRI using deep learninginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación73637385https://orcid.org/0000-0002-3652-195441312254https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Joao Paulo PapaAlexander Xavier FalcaoJosé Eduardo Ochoa LunaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/17e6d7cb-9db6-4365-81e4-03d1dee70f1a/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALGUTIERREZ_CASTILLA_NIC_CAR.pdfGUTIERREZ_CASTILLA_NIC_CAR.pdfapplication/pdf7070893https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d63720cd-83cd-4d2c-8196-182e5eeb3819/download8a6fa2770537b494b675af553fb77f2fMD53TEXTGUTIERREZ_CASTILLA_NIC_CAR.pdf.txtGUTIERREZ_CASTILLA_NIC_CAR.pdf.txtExtracted texttext/plain189705https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/5e27074b-0eaa-4e09-8c2e-77c2939d03cd/downloada14b0550e32dd6cd04a014205668c0ccMD54THUMBNAILGUTIERREZ_CASTILLA_NIC_CAR.pdf.jpgGUTIERREZ_CASTILLA_NIC_CAR.pdf.jpgGenerated Thumbnailimage/jpeg4269https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ac4a4c70-ff47-40c8-ba2f-e7695aa40ce7/download757cbe34e2f25dc18a06e3638aefa44dMD5520.500.12590/16852oai:repositorio.ucsp.edu.pe:20.500.12590/168522023-10-31 14:16:31.47https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.459123
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).