3D medical image segmentation based on 3D convolutional neural networks
Descripción del Articulo
A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/16856 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/16856 |
| Nivel de acceso: | acceso abierto |
| Materia: | Semantic Segmentation Loss Function Medical Images Neural Network Class Imbalance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_97543a8a000a2d4a6ed45814ff32a1a2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/16856 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
3D medical image segmentation based on 3D convolutional neural networks |
| title |
3D medical image segmentation based on 3D convolutional neural networks |
| spellingShingle |
3D medical image segmentation based on 3D convolutional neural networks Marquez Herrera, Alejandra Semantic Segmentation Loss Function Medical Images Neural Network Class Imbalance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
3D medical image segmentation based on 3D convolutional neural networks |
| title_full |
3D medical image segmentation based on 3D convolutional neural networks |
| title_fullStr |
3D medical image segmentation based on 3D convolutional neural networks |
| title_full_unstemmed |
3D medical image segmentation based on 3D convolutional neural networks |
| title_sort |
3D medical image segmentation based on 3D convolutional neural networks |
| author |
Marquez Herrera, Alejandra |
| author_facet |
Marquez Herrera, Alejandra |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Cuadros Vargas, Alex Jesús |
| dc.contributor.author.fl_str_mv |
Marquez Herrera, Alejandra |
| dc.subject.es_PE.fl_str_mv |
Semantic Segmentation Loss Function Medical Images Neural Network Class Imbalance |
| topic |
Semantic Segmentation Loss Function Medical Images Neural Network Class Imbalance https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related to the area of image analysis (among other areas). One example of these tasks is image segmentation, which aims to find regions or separable objects within an image. A more specific type of segmentation called semantic segmentation, makes sure that each region has a semantic meaning by giving it a label or class. Since neural networks can automate the task of semantic segmentation of images, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). Therefore, this thesis project seeks to address the task of semantic segmentation of volumetric medical images obtained by Magnetic Resonance Imaging (MRI). Volumetric images are composed of a set of 2D images that altogether represent a volume. We will use a pre-existing Three-dimensional Convolutional Neural Network (3D CNN) architecture, for the binary semantic segmentation of organs in volumetric images. We will talk about the data preprocessing process, as well as specific aspects of the 3D CNN architecture. Finally, we propose a variation in the formulation of the loss function used for training the 3D CNN, also called objective function, for the improvement of pixel-wise segmentation results. We will present the comparisons in performance we made between the proposed loss function and other pre-existing loss functions using two medical image segmentation datasets. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-09-29T03:46:21Z |
| dc.date.available.none.fl_str_mv |
2021-09-29T03:46:21Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1073428 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/16856 |
| identifier_str_mv |
1073428 |
| url |
https://hdl.handle.net/20.500.12590/16856 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Católica San Pablo Repositorio Institucional - UCSP |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ba3c411c-6784-46c8-96fa-0f62a10eb060/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bc00774-e486-47de-9406-c9bb69539607/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f82f4221-268f-46b9-9aa4-62c1d07541bb/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/66f4a0b2-9b71-4868-8d88-ba222ec38c91/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 fed4da081eb64261b593973040eb651c ed517b1b454274a79834ebbbedbf401f fa2f9930790b8969f3c98cb9c82d49d1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053042871304192 |
| spelling |
Cuadros Vargas, Alex JesúsMarquez Herrera, Alejandra2021-09-29T03:46:21Z2021-09-29T03:46:21Z20211073428https://hdl.handle.net/20.500.12590/16856A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related to the area of image analysis (among other areas). One example of these tasks is image segmentation, which aims to find regions or separable objects within an image. A more specific type of segmentation called semantic segmentation, makes sure that each region has a semantic meaning by giving it a label or class. Since neural networks can automate the task of semantic segmentation of images, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). Therefore, this thesis project seeks to address the task of semantic segmentation of volumetric medical images obtained by Magnetic Resonance Imaging (MRI). Volumetric images are composed of a set of 2D images that altogether represent a volume. We will use a pre-existing Three-dimensional Convolutional Neural Network (3D CNN) architecture, for the binary semantic segmentation of organs in volumetric images. We will talk about the data preprocessing process, as well as specific aspects of the 3D CNN architecture. Finally, we propose a variation in the formulation of the loss function used for training the 3D CNN, also called objective function, for the improvement of pixel-wise segmentation results. We will present the comparisons in performance we made between the proposed loss function and other pre-existing loss functions using two medical image segmentation datasets. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSemantic SegmentationLoss FunctionMedical ImagesNeural NetworkClass Imbalancehttps://purl.org/pe-repo/ocde/ford#1.02.013D medical image segmentation based on 3D convolutional neural networksinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación48477436https://orcid.org/0000-0001-7358-900229716900https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017José Eduardo Ochoa LunaJean SequeiraGuillermo Cámara ChávezJavier Montoya ZegarraLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ba3c411c-6784-46c8-96fa-0f62a10eb060/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALMARQUEZ_HERRERA_ALE_NEU.pdfMARQUEZ_HERRERA_ALE_NEU.pdfapplication/pdf6270184https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bc00774-e486-47de-9406-c9bb69539607/downloadfed4da081eb64261b593973040eb651cMD53TEXTMARQUEZ_HERRERA_ALE_NEU.pdf.txtMARQUEZ_HERRERA_ALE_NEU.pdf.txtExtracted texttext/plain122750https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f82f4221-268f-46b9-9aa4-62c1d07541bb/downloaded517b1b454274a79834ebbbedbf401fMD54THUMBNAILMARQUEZ_HERRERA_ALE_NEU.pdf.jpgMARQUEZ_HERRERA_ALE_NEU.pdf.jpgGenerated Thumbnailimage/jpeg3760https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/66f4a0b2-9b71-4868-8d88-ba222ec38c91/downloadfa2f9930790b8969f3c98cb9c82d49d1MD5520.500.12590/16856oai:repositorio.ucsp.edu.pe:20.500.12590/168562024-03-20 15:56:18.035https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.401922 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).