3D medical image segmentation based on 3D convolutional neural networks

Descripción del Articulo

A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related...

Descripción completa

Detalles Bibliográficos
Autor: Marquez Herrera, Alejandra
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16856
Enlace del recurso:https://hdl.handle.net/20.500.12590/16856
Nivel de acceso:acceso abierto
Materia:Semantic Segmentation
Loss Function
Medical Images
Neural Network
Class Imbalance
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_97543a8a000a2d4a6ed45814ff32a1a2
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/16856
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv 3D medical image segmentation based on 3D convolutional neural networks
title 3D medical image segmentation based on 3D convolutional neural networks
spellingShingle 3D medical image segmentation based on 3D convolutional neural networks
Marquez Herrera, Alejandra
Semantic Segmentation
Loss Function
Medical Images
Neural Network
Class Imbalance
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short 3D medical image segmentation based on 3D convolutional neural networks
title_full 3D medical image segmentation based on 3D convolutional neural networks
title_fullStr 3D medical image segmentation based on 3D convolutional neural networks
title_full_unstemmed 3D medical image segmentation based on 3D convolutional neural networks
title_sort 3D medical image segmentation based on 3D convolutional neural networks
author Marquez Herrera, Alejandra
author_facet Marquez Herrera, Alejandra
author_role author
dc.contributor.advisor.fl_str_mv Cuadros Vargas, Alex Jesús
dc.contributor.author.fl_str_mv Marquez Herrera, Alejandra
dc.subject.es_PE.fl_str_mv Semantic Segmentation
Loss Function
Medical Images
Neural Network
Class Imbalance
topic Semantic Segmentation
Loss Function
Medical Images
Neural Network
Class Imbalance
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related to the area of image analysis (among other areas). One example of these tasks is image segmentation, which aims to find regions or separable objects within an image. A more specific type of segmentation called semantic segmentation, makes sure that each region has a semantic meaning by giving it a label or class. Since neural networks can automate the task of semantic segmentation of images, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). Therefore, this thesis project seeks to address the task of semantic segmentation of volumetric medical images obtained by Magnetic Resonance Imaging (MRI). Volumetric images are composed of a set of 2D images that altogether represent a volume. We will use a pre-existing Three-dimensional Convolutional Neural Network (3D CNN) architecture, for the binary semantic segmentation of organs in volumetric images. We will talk about the data preprocessing process, as well as specific aspects of the 3D CNN architecture. Finally, we propose a variation in the formulation of the loss function used for training the 3D CNN, also called objective function, for the improvement of pixel-wise segmentation results. We will present the comparisons in performance we made between the proposed loss function and other pre-existing loss functions using two medical image segmentation datasets.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-29T03:46:21Z
dc.date.available.none.fl_str_mv 2021-09-29T03:46:21Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1073428
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/16856
identifier_str_mv 1073428
url https://hdl.handle.net/20.500.12590/16856
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ba3c411c-6784-46c8-96fa-0f62a10eb060/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bc00774-e486-47de-9406-c9bb69539607/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f82f4221-268f-46b9-9aa4-62c1d07541bb/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/66f4a0b2-9b71-4868-8d88-ba222ec38c91/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
fed4da081eb64261b593973040eb651c
ed517b1b454274a79834ebbbedbf401f
fa2f9930790b8969f3c98cb9c82d49d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053042871304192
spelling Cuadros Vargas, Alex JesúsMarquez Herrera, Alejandra2021-09-29T03:46:21Z2021-09-29T03:46:21Z20211073428https://hdl.handle.net/20.500.12590/16856A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of sophisticated neural network that has shown to efficiently learn tasks related to the area of image analysis (among other areas). One example of these tasks is image segmentation, which aims to find regions or separable objects within an image. A more specific type of segmentation called semantic segmentation, makes sure that each region has a semantic meaning by giving it a label or class. Since neural networks can automate the task of semantic segmentation of images, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). Therefore, this thesis project seeks to address the task of semantic segmentation of volumetric medical images obtained by Magnetic Resonance Imaging (MRI). Volumetric images are composed of a set of 2D images that altogether represent a volume. We will use a pre-existing Three-dimensional Convolutional Neural Network (3D CNN) architecture, for the binary semantic segmentation of organs in volumetric images. We will talk about the data preprocessing process, as well as specific aspects of the 3D CNN architecture. Finally, we propose a variation in the formulation of the loss function used for training the 3D CNN, also called objective function, for the improvement of pixel-wise segmentation results. We will present the comparisons in performance we made between the proposed loss function and other pre-existing loss functions using two medical image segmentation datasets. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSemantic SegmentationLoss FunctionMedical ImagesNeural NetworkClass Imbalancehttps://purl.org/pe-repo/ocde/ford#1.02.013D medical image segmentation based on 3D convolutional neural networksinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación48477436https://orcid.org/0000-0001-7358-900229716900https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017José Eduardo Ochoa LunaJean SequeiraGuillermo Cámara ChávezJavier Montoya ZegarraLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ba3c411c-6784-46c8-96fa-0f62a10eb060/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALMARQUEZ_HERRERA_ALE_NEU.pdfMARQUEZ_HERRERA_ALE_NEU.pdfapplication/pdf6270184https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bc00774-e486-47de-9406-c9bb69539607/downloadfed4da081eb64261b593973040eb651cMD53TEXTMARQUEZ_HERRERA_ALE_NEU.pdf.txtMARQUEZ_HERRERA_ALE_NEU.pdf.txtExtracted texttext/plain122750https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f82f4221-268f-46b9-9aa4-62c1d07541bb/downloaded517b1b454274a79834ebbbedbf401fMD54THUMBNAILMARQUEZ_HERRERA_ALE_NEU.pdf.jpgMARQUEZ_HERRERA_ALE_NEU.pdf.jpgGenerated Thumbnailimage/jpeg3760https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/66f4a0b2-9b71-4868-8d88-ba222ec38c91/downloadfa2f9930790b8969f3c98cb9c82d49d1MD5520.500.12590/16856oai:repositorio.ucsp.edu.pe:20.500.12590/168562024-03-20 15:56:18.035https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.401922
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).