Deep learning models for spatial prediction of fine particulate matter
Descripción del Articulo
Studies indicate that air pollutant concentrations affect human health. Especially, Fine Particulate Matter (PM2.5) is the most dangerous pollutant because this is related to cardiovascular and respiratory diseases, among others. Therefore, governments must monitor and control pollutant concentratio...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17845 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17845 |
| Nivel de acceso: | acceso abierto |
| Materia: | Spatial prediction Fine particulate matter k-Nearest neighbors Generative modeling Attention mechanism Deep learning https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_80ca496ea027cdbeaff452a9e9c3986d |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17845 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Deep learning models for spatial prediction of fine particulate matter |
| title |
Deep learning models for spatial prediction of fine particulate matter |
| spellingShingle |
Deep learning models for spatial prediction of fine particulate matter Colchado Soncco, Luis Ernesto Spatial prediction Fine particulate matter k-Nearest neighbors Generative modeling Attention mechanism Deep learning https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Deep learning models for spatial prediction of fine particulate matter |
| title_full |
Deep learning models for spatial prediction of fine particulate matter |
| title_fullStr |
Deep learning models for spatial prediction of fine particulate matter |
| title_full_unstemmed |
Deep learning models for spatial prediction of fine particulate matter |
| title_sort |
Deep learning models for spatial prediction of fine particulate matter |
| author |
Colchado Soncco, Luis Ernesto |
| author_facet |
Colchado Soncco, Luis Ernesto |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Ochoa Luna, Jose Eduardo |
| dc.contributor.author.fl_str_mv |
Colchado Soncco, Luis Ernesto |
| dc.subject.es_PE.fl_str_mv |
Spatial prediction Fine particulate matter k-Nearest neighbors Generative modeling Attention mechanism Deep learning |
| topic |
Spatial prediction Fine particulate matter k-Nearest neighbors Generative modeling Attention mechanism Deep learning https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
Studies indicate that air pollutant concentrations affect human health. Especially, Fine Particulate Matter (PM2.5) is the most dangerous pollutant because this is related to cardiovascular and respiratory diseases, among others. Therefore, governments must monitor and control pollutant concentrations. To this end, many of them have implemented Air quality monitoring (AQM) networks. However, AQM stations are usually spatially sparse due to their high costs in implementation and maintenance, leaving large áreas without a measure of pollution. Numerical models based on the simulation of diffusion and reaction process of air pollutants have been proposed to infer their spatial distribution. However, these models often require an extensive inventory of data and variables, as well as high-end computing hardware. In this research, we propose two deep learning models. The first is a generative model called Conditional Generative adversarial Network (cGAN). Additionally, we add a loss based on the predicted observation and the k nearest neighbor stations to smooth the randomness of adversarial learning. This variation is called Spatial-learning cGAN (cGANSL), which got better performance for spatial prediction. To interpolate PM2.5 on a location, cGANSL and classical methods like Inverse Distance Weighting (IDW) need to select the k nearest neighbor stations based on straight distance. However, this selection may leave out data from more distant neighbors that could provide valuable information. In this sense, the second proposed model in this study is a Neural Network with an attention-based layer. This model uses a recently proposed attention layer to build a structured graph of the AQM stations, where each station is a graph node to weight the k nearest neighbors for nodes based on attention kernels. The learned attention layer can generate a transformed feature representation for unobserved location, which is further processed by a neural network to infer the pollutant concentration. Based on data from AQM network in Beijing, meteorological conditions, and information from satellite products such as vegetation index (NDVI) and human activity or population-based on Nighttime Light producto (NTL). The cGANSL had a better performance than IDW, Ordinary Kriging (OK), and Neural Network with an attention mechanism. In this experiment, spatial prediction models that selected the k nearest neighbors had a good performance. That may be AQM station Beijing’s high correlation between them. However, using data from the AQM network of Sao Paulo, where AQM stations have a low correlation, the Neural network with an attention-based layer have better performance than IDW, OK, and cGANSL. Besides, the normalized attention weights computed by our attention model showed that in some cases, the attention given to the nearest nodes is independent of their spatial distances. Therefore, the attention model is more flexible since it can learn to interpolate PM2.5 concentration levels based on the available data of the AQM network and some context information. Finally, we found that NDVI and NTL are high related to air pollutant concentration predicted by the attention model. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-24T21:14:14Z |
| dc.date.available.none.fl_str_mv |
2023-11-24T21:14:14Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1080228 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17845 |
| identifier_str_mv |
1080228 |
| url |
https://hdl.handle.net/20.500.12590/17845 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad Católica San Pablo |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9d969a68-1375-47f5-8656-17f96539e452/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/df3054b9-be3b-4b28-94c8-824c34c7ebae/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/86d5bab8-b044-463a-8b80-96b0fc41c1d6/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3cabb85c-4e88-41aa-a48a-e4bcdaf87fb2/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bd23f2a-12de-4042-bcf9-82345bb2062c/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/21fc4ae1-a551-4b5b-b723-fb1f8d874375/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ec7fae9c-1766-4b63-aa19-f202fe941ce6/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/465a5f71-9667-41d4-bfbc-d2cc9e18cb16/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab1317d6-4e3d-4bc5-aff2-7da45727ea0e/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ebb51e08-a46a-49aa-8fd1-f922a3193520/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5f4d5f7-681a-453a-9b72-b27268ebf4f7/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/e6431a97-171b-44f6-b634-93993ed2ce10/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/69cb23eb-c105-476f-bd12-101bd3a5d3e9/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 f039bb4776aa27d03fc2895de23fe87b 8b817a4d0097d81e00d8c177cfe32ffc fba96ba1404b3843db8f17961525175c f5f8bea456cf161894159b8664755a86 7e302249897b418461397c34780c2f75 c399c5e09bae93097b2eeed6b9e03064 e1c06d85ae7b8b032bef47e42e4c08f9 f2dd1bf8c0d34c1e3893add90423e7a1 529e654a9b973317ede6a4e667e49ad5 894bed4bcb15036f465a0b7c97744275 9c3da631f6fc2f5ffb642c743e3a4421 1a910b8222bbe0fa86fe5e397ec244f4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053042135203840 |
| spelling |
Ochoa Luna, Jose EduardoColchado Soncco, Luis Ernesto2023-11-24T21:14:14Z2023-11-24T21:14:14Z20231080228https://hdl.handle.net/20.500.12590/17845Studies indicate that air pollutant concentrations affect human health. Especially, Fine Particulate Matter (PM2.5) is the most dangerous pollutant because this is related to cardiovascular and respiratory diseases, among others. Therefore, governments must monitor and control pollutant concentrations. To this end, many of them have implemented Air quality monitoring (AQM) networks. However, AQM stations are usually spatially sparse due to their high costs in implementation and maintenance, leaving large áreas without a measure of pollution. Numerical models based on the simulation of diffusion and reaction process of air pollutants have been proposed to infer their spatial distribution. However, these models often require an extensive inventory of data and variables, as well as high-end computing hardware. In this research, we propose two deep learning models. The first is a generative model called Conditional Generative adversarial Network (cGAN). Additionally, we add a loss based on the predicted observation and the k nearest neighbor stations to smooth the randomness of adversarial learning. This variation is called Spatial-learning cGAN (cGANSL), which got better performance for spatial prediction. To interpolate PM2.5 on a location, cGANSL and classical methods like Inverse Distance Weighting (IDW) need to select the k nearest neighbor stations based on straight distance. However, this selection may leave out data from more distant neighbors that could provide valuable information. In this sense, the second proposed model in this study is a Neural Network with an attention-based layer. This model uses a recently proposed attention layer to build a structured graph of the AQM stations, where each station is a graph node to weight the k nearest neighbors for nodes based on attention kernels. The learned attention layer can generate a transformed feature representation for unobserved location, which is further processed by a neural network to infer the pollutant concentration. Based on data from AQM network in Beijing, meteorological conditions, and information from satellite products such as vegetation index (NDVI) and human activity or population-based on Nighttime Light producto (NTL). The cGANSL had a better performance than IDW, Ordinary Kriging (OK), and Neural Network with an attention mechanism. In this experiment, spatial prediction models that selected the k nearest neighbors had a good performance. That may be AQM station Beijing’s high correlation between them. However, using data from the AQM network of Sao Paulo, where AQM stations have a low correlation, the Neural network with an attention-based layer have better performance than IDW, OK, and cGANSL. Besides, the normalized attention weights computed by our attention model showed that in some cases, the attention given to the nearest nodes is independent of their spatial distances. Therefore, the attention model is more flexible since it can learn to interpolate PM2.5 concentration levels based on the available data of the AQM network and some context information. Finally, we found that NDVI and NTL are high related to air pollutant concentration predicted by the attention model.Tesis de maestríaapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Spatial predictionFine particulate matterk-Nearest neighborsGenerative modelingAttention mechanismDeep learninghttps://purl.org/pe-repo/ocde/ford#1.02.01Deep learning models for spatial prediction of fine particulate matterinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computaciónhttps://orcid.org/0000-0002-8979-378529738760https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Cuadros Vargas, Alex JesúsVillanueva Talavera, Edwin RafaelCalcina Ccori, Pablo CesarLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9d969a68-1375-47f5-8656-17f96539e452/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALCOLCHADO_SONCCO_LUI_ DEE.pdfCOLCHADO_SONCCO_LUI_ DEE.pdfapplication/pdf26769015https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/df3054b9-be3b-4b28-94c8-824c34c7ebae/downloadf039bb4776aa27d03fc2895de23fe87bMD54TURNITIN.pdfTURNITIN.pdfapplication/pdf26732893https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/86d5bab8-b044-463a-8b80-96b0fc41c1d6/download8b817a4d0097d81e00d8c177cfe32ffcMD55ACTA.pdfACTA.pdfapplication/pdf480295https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3cabb85c-4e88-41aa-a48a-e4bcdaf87fb2/downloadfba96ba1404b3843db8f17961525175cMD52AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf169852https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9bd23f2a-12de-4042-bcf9-82345bb2062c/downloadf5f8bea456cf161894159b8664755a86MD53TEXTCOLCHADO_SONCCO_LUI_ DEE.pdf.txtCOLCHADO_SONCCO_LUI_ DEE.pdf.txtExtracted texttext/plain100721https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/21fc4ae1-a551-4b5b-b723-fb1f8d874375/download7e302249897b418461397c34780c2f75MD510TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain2033https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ec7fae9c-1766-4b63-aa19-f202fe941ce6/downloadc399c5e09bae93097b2eeed6b9e03064MD512ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain2https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/465a5f71-9667-41d4-bfbc-d2cc9e18cb16/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4370https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ab1317d6-4e3d-4bc5-aff2-7da45727ea0e/downloadf2dd1bf8c0d34c1e3893add90423e7a1MD58THUMBNAILCOLCHADO_SONCCO_LUI_ DEE.pdf.jpgCOLCHADO_SONCCO_LUI_ DEE.pdf.jpgGenerated Thumbnailimage/jpeg3733https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ebb51e08-a46a-49aa-8fd1-f922a3193520/download529e654a9b973317ede6a4e667e49ad5MD511TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3313https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d5f4d5f7-681a-453a-9b72-b27268ebf4f7/download894bed4bcb15036f465a0b7c97744275MD513ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4887https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/e6431a97-171b-44f6-b634-93993ed2ce10/download9c3da631f6fc2f5ffb642c743e3a4421MD57AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5769https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/69cb23eb-c105-476f-bd12-101bd3a5d3e9/download1a910b8222bbe0fa86fe5e397ec244f4MD5920.500.12590/17845oai:repositorio.ucsp.edu.pe:20.500.12590/178452023-11-28 10:50:33.942https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.385441 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).