Multimodal unconstrained people recognition with face and ear images using deep learning

Descripción del Articulo

Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images...

Descripción completa

Detalles Bibliográficos
Autor: Ramos Cooper, Solange Griselly
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17819
Enlace del recurso:https://hdl.handle.net/20.500.12590/17819
Nivel de acceso:acceso abierto
Materia:Multibiometric system
Multimodal recognition
Face recognition
Ear recognition
Feature-level fusión
Score-level fusión
Two-stream CNN.
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_60e485b3ed7066bb62750deb37bec04a
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/17819
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Multimodal unconstrained people recognition with face and ear images using deep learning
title Multimodal unconstrained people recognition with face and ear images using deep learning
spellingShingle Multimodal unconstrained people recognition with face and ear images using deep learning
Ramos Cooper, Solange Griselly
Multibiometric system
Multimodal recognition
Face recognition
Ear recognition
Feature-level fusión
Score-level fusión
Two-stream CNN.
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Multimodal unconstrained people recognition with face and ear images using deep learning
title_full Multimodal unconstrained people recognition with face and ear images using deep learning
title_fullStr Multimodal unconstrained people recognition with face and ear images using deep learning
title_full_unstemmed Multimodal unconstrained people recognition with face and ear images using deep learning
title_sort Multimodal unconstrained people recognition with face and ear images using deep learning
author Ramos Cooper, Solange Griselly
author_facet Ramos Cooper, Solange Griselly
author_role author
dc.contributor.advisor.fl_str_mv Camara Chavez, Guillermo
dc.contributor.author.fl_str_mv Ramos Cooper, Solange Griselly
dc.subject.es_PE.fl_str_mv Multibiometric system
Multimodal recognition
Face recognition
Ear recognition
Feature-level fusión
Score-level fusión
Two-stream CNN.
topic Multibiometric system
Multimodal recognition
Face recognition
Ear recognition
Feature-level fusión
Score-level fusión
Two-stream CNN.
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images taken under uncontrolled conditions. In this work, we investigate several approaches to fuse information from the face and ear images to recognize people in a more accurate manner than using each method separately. We leverage the research maturity level of the face recognition field to build, first a truly multimodal database of ear and face images called VGGFace-Ear dataset, second a model that can describe ear images with high generalization called VGGEar model, and finally explore fusion strategies at two different levels in a common recognition pipeline, feature and score levels. Experiments on the UERC dataset have shown, first of all, an improvement of around 7% compared to the state-of-the-art methods in the ear recognition field. Second, fusing information from the face and ear images increases recognition rates from 79% and 82%, in the unimodal face and ear recognition respectively, to 94% recognition rate using the Rank-1 metric.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-15T16:25:34Z
dc.date.available.none.fl_str_mv 2023-11-15T16:25:34Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1080188
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/17819
identifier_str_mv 1080188
url https://hdl.handle.net/20.500.12590/17819
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica San pablo
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Católica San pablo
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a09d601b-3528-404c-a8a4-d11965174404/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33b86c9e-1a4f-4eba-86c0-efa04a3e921b/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d98fba4e-b9a5-4c01-bc35-d560c4a6e685/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f0c5efda-3293-4f7c-aad4-46452c696597/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f5d47966-fb75-4022-ab22-86de4dd38c81/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b37d3c01-02b8-42f7-8934-acb17194fdb7/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8681244e-d10a-45d9-a374-47f675048374/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ae3b2f59-ffb1-4bc2-96b4-cc8812fbef71/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/dfb8baa3-8850-467d-ab56-d21b5be29bbc/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3e0193e2-7ba4-4206-bc58-de4a3860c1e6/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/91c169da-1eb8-4658-a96c-9ca368c67842/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a4d8e612-8bc3-4e4f-9af0-7ab21d90b807/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/2d6b1e50-65fe-42aa-8f85-20b0c1687f6d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
be447cd16e00cb5c06bce8e782d037fa
b45ca2db0a50790a27a46a7e8b63fc32
74a6ba7c87b8ad17c96e751d98715834
c40cf0ed3c00ac7cbf17595292b8fa46
b1aa9b58855f56221ff224c017f99dc7
848850e0b3c255067102b0ef51952c4a
89aacadce579b02cf17172721dfb4095
dda0417e334c62c462315b0a4e69139c
5d488c0cc3907f3634790aafa0458af9
62a2cb001a6494e034cbc86a5027f335
1872fa30177bb0d7eb5b322ab9fe0296
d0077d4c6dcc936a37627aadc0c4d67c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1850496448504791040
spelling Camara Chavez, GuillermoRamos Cooper, Solange Griselly2023-11-15T16:25:34Z2023-11-15T16:25:34Z20231080188https://hdl.handle.net/20.500.12590/17819Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images taken under uncontrolled conditions. In this work, we investigate several approaches to fuse information from the face and ear images to recognize people in a more accurate manner than using each method separately. We leverage the research maturity level of the face recognition field to build, first a truly multimodal database of ear and face images called VGGFace-Ear dataset, second a model that can describe ear images with high generalization called VGGEar model, and finally explore fusion strategies at two different levels in a common recognition pipeline, feature and score levels. Experiments on the UERC dataset have shown, first of all, an improvement of around 7% compared to the state-of-the-art methods in the ear recognition field. Second, fusing information from the face and ear images increases recognition rates from 79% and 82%, in the unimodal face and ear recognition respectively, to 94% recognition rate using the Rank-1 metric.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Multibiometric systemMultimodal recognitionFace recognitionEar recognitionFeature-level fusiónScore-level fusiónTwo-stream CNN.https://purl.org/pe-repo/ocde/ford#1.02.01Multimodal unconstrained people recognition with face and ear images using deep learninginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación47198912https://orcid.org/0000-0003-2440-024730960286https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoMora Colque, Rensso Victor HugoCayllahua Cahuina, Edward Jorge YuriMenotti, DavidLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a09d601b-3528-404c-a8a4-d11965174404/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALRAMOS_COOPER_SOL_MUL.pdfRAMOS_COOPER_SOL_MUL.pdfapplication/pdf41838517https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33b86c9e-1a4f-4eba-86c0-efa04a3e921b/downloadbe447cd16e00cb5c06bce8e782d037faMD54TURNITIN.pdfTURNITIN.pdfapplication/pdf21185797https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d98fba4e-b9a5-4c01-bc35-d560c4a6e685/downloadb45ca2db0a50790a27a46a7e8b63fc32MD55ACTA.pdfACTA.pdfapplication/pdf540819https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f0c5efda-3293-4f7c-aad4-46452c696597/download74a6ba7c87b8ad17c96e751d98715834MD52AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf248451https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f5d47966-fb75-4022-ab22-86de4dd38c81/downloadc40cf0ed3c00ac7cbf17595292b8fa46MD53TEXTRAMOS_COOPER_SOL_MUL.pdf.txtRAMOS_COOPER_SOL_MUL.pdf.txtExtracted texttext/plain100187https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b37d3c01-02b8-42f7-8934-acb17194fdb7/downloadb1aa9b58855f56221ff224c017f99dc7MD510TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain2008https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8681244e-d10a-45d9-a374-47f675048374/download848850e0b3c255067102b0ef51952c4aMD512ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1943https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ae3b2f59-ffb1-4bc2-96b4-cc8812fbef71/download89aacadce579b02cf17172721dfb4095MD56AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4545https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/dfb8baa3-8850-467d-ab56-d21b5be29bbc/downloaddda0417e334c62c462315b0a4e69139cMD58THUMBNAILRAMOS_COOPER_SOL_MUL.pdf.jpgRAMOS_COOPER_SOL_MUL.pdf.jpgGenerated Thumbnailimage/jpeg3707https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3e0193e2-7ba4-4206-bc58-de4a3860c1e6/download5d488c0cc3907f3634790aafa0458af9MD511TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3357https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/91c169da-1eb8-4658-a96c-9ca368c67842/download62a2cb001a6494e034cbc86a5027f335MD513ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4954https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a4d8e612-8bc3-4e4f-9af0-7ab21d90b807/download1872fa30177bb0d7eb5b322ab9fe0296MD57AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5746https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/2d6b1e50-65fe-42aa-8f85-20b0c1687f6d/downloadd0077d4c6dcc936a37627aadc0c4d67cMD5920.500.12590/17819oai:repositorio.ucsp.edu.pe:20.500.12590/178192023-11-16 17:33:17.807https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.941187
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).