Multimodal unconstrained people recognition with face and ear images using deep learning
Descripción del Articulo
Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17819 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17819 |
| Nivel de acceso: | acceso abierto |
| Materia: | Multibiometric system Multimodal recognition Face recognition Ear recognition Feature-level fusión Score-level fusión Two-stream CNN. https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_60e485b3ed7066bb62750deb37bec04a |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17819 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| title |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| spellingShingle |
Multimodal unconstrained people recognition with face and ear images using deep learning Ramos Cooper, Solange Griselly Multibiometric system Multimodal recognition Face recognition Ear recognition Feature-level fusión Score-level fusión Two-stream CNN. https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| title_full |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| title_fullStr |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| title_full_unstemmed |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| title_sort |
Multimodal unconstrained people recognition with face and ear images using deep learning |
| author |
Ramos Cooper, Solange Griselly |
| author_facet |
Ramos Cooper, Solange Griselly |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Camara Chavez, Guillermo |
| dc.contributor.author.fl_str_mv |
Ramos Cooper, Solange Griselly |
| dc.subject.es_PE.fl_str_mv |
Multibiometric system Multimodal recognition Face recognition Ear recognition Feature-level fusión Score-level fusión Two-stream CNN. |
| topic |
Multibiometric system Multimodal recognition Face recognition Ear recognition Feature-level fusión Score-level fusión Two-stream CNN. https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images taken under uncontrolled conditions. In this work, we investigate several approaches to fuse information from the face and ear images to recognize people in a more accurate manner than using each method separately. We leverage the research maturity level of the face recognition field to build, first a truly multimodal database of ear and face images called VGGFace-Ear dataset, second a model that can describe ear images with high generalization called VGGEar model, and finally explore fusion strategies at two different levels in a common recognition pipeline, feature and score levels. Experiments on the UERC dataset have shown, first of all, an improvement of around 7% compared to the state-of-the-art methods in the ear recognition field. Second, fusing information from the face and ear images increases recognition rates from 79% and 82%, in the unimodal face and ear recognition respectively, to 94% recognition rate using the Rank-1 metric. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-15T16:25:34Z |
| dc.date.available.none.fl_str_mv |
2023-11-15T16:25:34Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1080188 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17819 |
| identifier_str_mv |
1080188 |
| url |
https://hdl.handle.net/20.500.12590/17819 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad Católica San pablo |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a09d601b-3528-404c-a8a4-d11965174404/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33b86c9e-1a4f-4eba-86c0-efa04a3e921b/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d98fba4e-b9a5-4c01-bc35-d560c4a6e685/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f0c5efda-3293-4f7c-aad4-46452c696597/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f5d47966-fb75-4022-ab22-86de4dd38c81/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b37d3c01-02b8-42f7-8934-acb17194fdb7/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8681244e-d10a-45d9-a374-47f675048374/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ae3b2f59-ffb1-4bc2-96b4-cc8812fbef71/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/dfb8baa3-8850-467d-ab56-d21b5be29bbc/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3e0193e2-7ba4-4206-bc58-de4a3860c1e6/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/91c169da-1eb8-4658-a96c-9ca368c67842/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a4d8e612-8bc3-4e4f-9af0-7ab21d90b807/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/2d6b1e50-65fe-42aa-8f85-20b0c1687f6d/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 be447cd16e00cb5c06bce8e782d037fa b45ca2db0a50790a27a46a7e8b63fc32 74a6ba7c87b8ad17c96e751d98715834 c40cf0ed3c00ac7cbf17595292b8fa46 b1aa9b58855f56221ff224c017f99dc7 848850e0b3c255067102b0ef51952c4a 89aacadce579b02cf17172721dfb4095 dda0417e334c62c462315b0a4e69139c 5d488c0cc3907f3634790aafa0458af9 62a2cb001a6494e034cbc86a5027f335 1872fa30177bb0d7eb5b322ab9fe0296 d0077d4c6dcc936a37627aadc0c4d67c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1850496448504791040 |
| spelling |
Camara Chavez, GuillermoRamos Cooper, Solange Griselly2023-11-15T16:25:34Z2023-11-15T16:25:34Z20231080188https://hdl.handle.net/20.500.12590/17819Multibiometric systems rely on the idea of combining multiple biometric methods into one single process that leads to a more reliable and accurate system. The combination of two different biometric traits such as face and ear results in an advantageous and complementary process when using 2D images taken under uncontrolled conditions. In this work, we investigate several approaches to fuse information from the face and ear images to recognize people in a more accurate manner than using each method separately. We leverage the research maturity level of the face recognition field to build, first a truly multimodal database of ear and face images called VGGFace-Ear dataset, second a model that can describe ear images with high generalization called VGGEar model, and finally explore fusion strategies at two different levels in a common recognition pipeline, feature and score levels. Experiments on the UERC dataset have shown, first of all, an improvement of around 7% compared to the state-of-the-art methods in the ear recognition field. Second, fusing information from the face and ear images increases recognition rates from 79% and 82%, in the unimodal face and ear recognition respectively, to 94% recognition rate using the Rank-1 metric.Tesis de maestríaapplication/pdfengUniversidad Católica San pabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Multibiometric systemMultimodal recognitionFace recognitionEar recognitionFeature-level fusiónScore-level fusiónTwo-stream CNN.https://purl.org/pe-repo/ocde/ford#1.02.01Multimodal unconstrained people recognition with face and ear images using deep learninginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación47198912https://orcid.org/0000-0003-2440-024730960286https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoMora Colque, Rensso Victor HugoCayllahua Cahuina, Edward Jorge YuriMenotti, DavidLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a09d601b-3528-404c-a8a4-d11965174404/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALRAMOS_COOPER_SOL_MUL.pdfRAMOS_COOPER_SOL_MUL.pdfapplication/pdf41838517https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/33b86c9e-1a4f-4eba-86c0-efa04a3e921b/downloadbe447cd16e00cb5c06bce8e782d037faMD54TURNITIN.pdfTURNITIN.pdfapplication/pdf21185797https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d98fba4e-b9a5-4c01-bc35-d560c4a6e685/downloadb45ca2db0a50790a27a46a7e8b63fc32MD55ACTA.pdfACTA.pdfapplication/pdf540819https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f0c5efda-3293-4f7c-aad4-46452c696597/download74a6ba7c87b8ad17c96e751d98715834MD52AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf248451https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f5d47966-fb75-4022-ab22-86de4dd38c81/downloadc40cf0ed3c00ac7cbf17595292b8fa46MD53TEXTRAMOS_COOPER_SOL_MUL.pdf.txtRAMOS_COOPER_SOL_MUL.pdf.txtExtracted texttext/plain100187https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b37d3c01-02b8-42f7-8934-acb17194fdb7/downloadb1aa9b58855f56221ff224c017f99dc7MD510TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain2008https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/8681244e-d10a-45d9-a374-47f675048374/download848850e0b3c255067102b0ef51952c4aMD512ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain1943https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ae3b2f59-ffb1-4bc2-96b4-cc8812fbef71/download89aacadce579b02cf17172721dfb4095MD56AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4545https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/dfb8baa3-8850-467d-ab56-d21b5be29bbc/downloaddda0417e334c62c462315b0a4e69139cMD58THUMBNAILRAMOS_COOPER_SOL_MUL.pdf.jpgRAMOS_COOPER_SOL_MUL.pdf.jpgGenerated Thumbnailimage/jpeg3707https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/3e0193e2-7ba4-4206-bc58-de4a3860c1e6/download5d488c0cc3907f3634790aafa0458af9MD511TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3357https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/91c169da-1eb8-4658-a96c-9ca368c67842/download62a2cb001a6494e034cbc86a5027f335MD513ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4954https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a4d8e612-8bc3-4e4f-9af0-7ab21d90b807/download1872fa30177bb0d7eb5b322ab9fe0296MD57AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5746https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/2d6b1e50-65fe-42aa-8f85-20b0c1687f6d/downloadd0077d4c6dcc936a37627aadc0c4d67cMD5920.500.12590/17819oai:repositorio.ucsp.edu.pe:20.500.12590/178192023-11-16 17:33:17.807https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.941187 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).