Surveillance video summarization based on trajectory rarity measure
Descripción del Articulo
The dynamic video summarization of surveillance videos has several critical applications, mainly due to the wide availability of digital cameras in environments such as airports, train and bus stations, shopping centers, stadiums, buildings, schools, hospitals, roads, among others. This study presen...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/16147 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/16147 |
| Nivel de acceso: | acceso abierto |
| Materia: | Morphology Trajectory Descriptor Trajectory Feature Extraction Dynamic Surveillance Video Summarization Trajectory Clustering https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_4db707183763c5dedba0439d47666989 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/16147 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Surveillance video summarization based on trajectory rarity measure |
| title |
Surveillance video summarization based on trajectory rarity measure |
| spellingShingle |
Surveillance video summarization based on trajectory rarity measure Quispe Torres, Gerar Francis Morphology Trajectory Descriptor Trajectory Feature Extraction Dynamic Surveillance Video Summarization Trajectory Clustering https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Surveillance video summarization based on trajectory rarity measure |
| title_full |
Surveillance video summarization based on trajectory rarity measure |
| title_fullStr |
Surveillance video summarization based on trajectory rarity measure |
| title_full_unstemmed |
Surveillance video summarization based on trajectory rarity measure |
| title_sort |
Surveillance video summarization based on trajectory rarity measure |
| author |
Quispe Torres, Gerar Francis |
| author_facet |
Quispe Torres, Gerar Francis |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Mora Colque, Rensso Victor Hugo |
| dc.contributor.author.fl_str_mv |
Quispe Torres, Gerar Francis |
| dc.subject.es_PE.fl_str_mv |
Morphology Trajectory Descriptor Trajectory Feature Extraction Dynamic Surveillance Video Summarization Trajectory Clustering |
| topic |
Morphology Trajectory Descriptor Trajectory Feature Extraction Dynamic Surveillance Video Summarization Trajectory Clustering https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
The dynamic video summarization of surveillance videos has several critical applications, mainly due to the wide availability of digital cameras in environments such as airports, train and bus stations, shopping centers, stadiums, buildings, schools, hospitals, roads, among others. This study presents an approach for the generation of dynamic summary on surveillance video domain based on human trajectories. It has an emphasis on trajectory descriptors in conjunction with the unsupervised clustering method. Our approach contribute to existing literature concerning the combination of methods and objectives. We hypothesize that the clustering of trajectories permits to identify rare trajectories base on their morphology. The clustering as an output provides numerous subsets of trajectories or clusters and the number of elements of a specific cluster is used to determine their rarity. Those subsets with few components are rare while the others that have a high number of elements are considered ordinary; therefore, the implications of our study show that is possible to use unsupervised clustering for automatic detection of rare trajectories based on their morphology and with this information segment videos. We experimented with different sets of trajectories segmenting the rare videos from our ground truth. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2019-12-10T16:14:19Z |
| dc.date.available.none.fl_str_mv |
2019-12-10T16:14:19Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.other.none.fl_str_mv |
1072066 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/16147 |
| identifier_str_mv |
1072066 |
| url |
https://hdl.handle.net/20.500.12590/16147 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Católica San Pablo Repositorio Institucional - UCSP |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/beb6b98a-c1fc-430c-a48d-4c1c7c5ee20d/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/36744997-102b-4615-b969-669c6d3ffaff/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/60f46cfd-941d-4c26-bd94-367f41767b39/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f748c333-c9ad-4805-96b0-63220c2c376b/download |
| bitstream.checksum.fl_str_mv |
128766e5db0fe74b10e0dbb03b4afdcd 8a4605be74aa9ea9d79846c1fba20a33 4957e12caf18414870bed6110b333f84 a7e37fb38ef4979e24f6312de86157aa |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053031225819136 |
| spelling |
Mora Colque, Rensso Victor HugoQuispe Torres, Gerar Francis2019-12-10T16:14:19Z2019-12-10T16:14:19Z20191072066https://hdl.handle.net/20.500.12590/16147The dynamic video summarization of surveillance videos has several critical applications, mainly due to the wide availability of digital cameras in environments such as airports, train and bus stations, shopping centers, stadiums, buildings, schools, hospitals, roads, among others. This study presents an approach for the generation of dynamic summary on surveillance video domain based on human trajectories. It has an emphasis on trajectory descriptors in conjunction with the unsupervised clustering method. Our approach contribute to existing literature concerning the combination of methods and objectives. We hypothesize that the clustering of trajectories permits to identify rare trajectories base on their morphology. The clustering as an output provides numerous subsets of trajectories or clusters and the number of elements of a specific cluster is used to determine their rarity. Those subsets with few components are rare while the others that have a high number of elements are considered ordinary; therefore, the implications of our study show that is possible to use unsupervised clustering for automatic detection of rare trajectories based on their morphology and with this information segment videos. We experimented with different sets of trajectories segmenting the rare videos from our ground truth.Trabajo de investigaciónapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPMorphology Trajectory DescriptorTrajectory Feature ExtractionDynamic Surveillance Video SummarizationTrajectory Clusteringhttps://purl.org/pe-repo/ocde/ford#1.02.01Surveillance video summarization based on trajectory rarity measureinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Facultad de Ingeniería y ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional de Ciencia de la ComputaciónORIGINALQUISPE_TORRES_GER_SUM.pdfQUISPE_TORRES_GER_SUM.pdfapplication/pdf14517866https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/beb6b98a-c1fc-430c-a48d-4c1c7c5ee20d/download128766e5db0fe74b10e0dbb03b4afdcdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/36744997-102b-4615-b969-669c6d3ffaff/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTQUISPE_TORRES_GER_SUM.pdf.txtQUISPE_TORRES_GER_SUM.pdf.txtExtracted texttext/plain147112https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/60f46cfd-941d-4c26-bd94-367f41767b39/download4957e12caf18414870bed6110b333f84MD53THUMBNAILQUISPE_TORRES_GER_SUM.pdf.jpgQUISPE_TORRES_GER_SUM.pdf.jpgGenerated Thumbnailimage/jpeg3541https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f748c333-c9ad-4805-96b0-63220c2c376b/downloada7e37fb38ef4979e24f6312de86157aaMD5420.500.12590/16147oai:repositorio.ucsp.edu.pe:20.500.12590/161472023-07-26 00:50:03.648https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.469024 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).