Polyp image segmentation with polyp2seg
Descripción del Articulo
Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational tech...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/17849 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/17849 |
| Nivel de acceso: | acceso abierto |
| Materia: | Deep learning Computer visión Colo-rectal cancer Image Segmentation Medical data https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
UCSP_3cb528227a618db41bbcfc3094502683 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucsp.edu.pe:20.500.12590/17849 |
| network_acronym_str |
UCSP |
| network_name_str |
UCSP-Institucional |
| repository_id_str |
3854 |
| dc.title.es_PE.fl_str_mv |
Polyp image segmentation with polyp2seg |
| title |
Polyp image segmentation with polyp2seg |
| spellingShingle |
Polyp image segmentation with polyp2seg Mandujano Cornejo, Vittorino Deep learning Computer visión Colo-rectal cancer Image Segmentation Medical data https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Polyp image segmentation with polyp2seg |
| title_full |
Polyp image segmentation with polyp2seg |
| title_fullStr |
Polyp image segmentation with polyp2seg |
| title_full_unstemmed |
Polyp image segmentation with polyp2seg |
| title_sort |
Polyp image segmentation with polyp2seg |
| author |
Mandujano Cornejo, Vittorino |
| author_facet |
Mandujano Cornejo, Vittorino |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Montoya Zegarra, Javier Alexander |
| dc.contributor.author.fl_str_mv |
Mandujano Cornejo, Vittorino |
| dc.subject.es_PE.fl_str_mv |
Deep learning Computer visión Colo-rectal cancer Image Segmentation Medical data |
| topic |
Deep learning Computer visión Colo-rectal cancer Image Segmentation Medical data https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational techniques, well known as Computed Aided Diagnosis, facilitates diffusion and improves early recognition of potentially cancerous tissues. In this work, we propose a novel hybrid deep learning architecture for polyp image segmentation named Polyp2Seg. The model adopts a transformer architecture as its encoder to extract multi-hierarchical features. Additionally, a novel Feature Aggregation Module (FAM) merges progressively the multilevel features from the encoder to better localise polyps by adding semantic information. Next, a Multi-Context Attention Module (MCAM) removes noise and other artifacts, while incorporating a multi-scale attention mechanism to further improve polyp detection. Quantitative and qualitative experiments on five challenging datasets and over 5 different SOTAs demonstrate that our method significantly improves the segmentation accuracy of Polyps under different evaluation metrics. Our model achieves a new state-of the-art over most of the datasets. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-27T15:00:28Z |
| dc.date.available.none.fl_str_mv |
2023-11-27T15:00:28Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.other.none.fl_str_mv |
1080233 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12590/17849 |
| identifier_str_mv |
1080233 |
| url |
https://hdl.handle.net/20.500.12590/17849 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Católica San Pablo |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad Católica San Pablo |
| dc.source.none.fl_str_mv |
reponame:UCSP-Institucional instname:Universidad Católica San Pablo instacron:UCSP |
| instname_str |
Universidad Católica San Pablo |
| instacron_str |
UCSP |
| institution |
UCSP |
| reponame_str |
UCSP-Institucional |
| collection |
UCSP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/acec3f4e-984c-4cf9-b750-42304fb9efad/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1c72092e-3c95-4665-ae12-a96937105547/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6aa8dc41-484b-489f-ad7e-fc4a2f0f0e1d/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/415a9bff-b457-4f4b-846e-0ac4a38579b8/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ccc5036b-64bc-4562-9339-ba8e3723a343/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b91da36d-a7a5-4a16-aacb-da6b848edd7d/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ef19e37f-8e26-4e9a-8e3d-97f091eb0abc/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d000d713-a6b6-41cf-8012-780e29ffac1e/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/54c70753-d6dd-4867-8010-d385c2ff8ccf/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0761bc8b-25da-4db9-8968-194792e7a0e6/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/38ef2b08-b3ca-48d8-b43c-d6364e30b66d/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/92f9b3b6-c600-40c8-8469-0ac6c8331bda/download https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8596a78-c061-4e86-aaed-6dcf14724e8c/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 59525ee1a124c71bfc040e26faad8bc4 f482f386ecd877784c619608832af60c 3a4bbe5baff9ef869b4d13df8306c8da 132b2b45130ceab01f65c4dd88ef8eef 45f04c90e83613897869236d147416bd 0f353d7bc02b115080e20c84d5b24f9b e1c06d85ae7b8b032bef47e42e4c08f9 de30aaf80c2dcc50d2946a1378e634e2 6d18405a4d186e168cf289e8c88ebca0 3c545d98dffacee4f5f8368e4766a453 df740db8773af3eb2bfc84be07db39ab 3832e8fe2c9b28d4d154fdce84de694b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica San Pablo |
| repository.mail.fl_str_mv |
dspace@ucsp.edu.pe |
| _version_ |
1851053043964968960 |
| spelling |
Montoya Zegarra, Javier AlexanderMandujano Cornejo, Vittorino2023-11-27T15:00:28Z2023-11-27T15:00:28Z20231080233https://hdl.handle.net/20.500.12590/17849Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational techniques, well known as Computed Aided Diagnosis, facilitates diffusion and improves early recognition of potentially cancerous tissues. In this work, we propose a novel hybrid deep learning architecture for polyp image segmentation named Polyp2Seg. The model adopts a transformer architecture as its encoder to extract multi-hierarchical features. Additionally, a novel Feature Aggregation Module (FAM) merges progressively the multilevel features from the encoder to better localise polyps by adding semantic information. Next, a Multi-Context Attention Module (MCAM) removes noise and other artifacts, while incorporating a multi-scale attention mechanism to further improve polyp detection. Quantitative and qualitative experiments on five challenging datasets and over 5 different SOTAs demonstrate that our method significantly improves the segmentation accuracy of Polyps under different evaluation metrics. Our model achieves a new state-of the-art over most of the datasets.Tesis de maestríaapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Deep learningComputer visiónColo-rectal cancerImage SegmentationMedical datahttps://purl.org/pe-repo/ocde/ford#1.02.01Polyp image segmentation with polyp2seginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación70512168https://orcid.org/0000-0002-3652-195441312254https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoDou, QiYang, GuangLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/acec3f4e-984c-4cf9-b750-42304fb9efad/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALMANDUJANO_CORNEJO_VIT_POL.pdfMANDUJANO_CORNEJO_VIT_POL.pdfapplication/pdf30547702https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1c72092e-3c95-4665-ae12-a96937105547/download59525ee1a124c71bfc040e26faad8bc4MD54TURNITIN.pdfTURNITIN.pdfapplication/pdf23874393https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6aa8dc41-484b-489f-ad7e-fc4a2f0f0e1d/downloadf482f386ecd877784c619608832af60cMD55ACTA.pdfACTA.pdfapplication/pdf477347https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/415a9bff-b457-4f4b-846e-0ac4a38579b8/download3a4bbe5baff9ef869b4d13df8306c8daMD52AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf122541https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ccc5036b-64bc-4562-9339-ba8e3723a343/download132b2b45130ceab01f65c4dd88ef8eefMD53TEXTMANDUJANO_CORNEJO_VIT_POL.pdf.txtMANDUJANO_CORNEJO_VIT_POL.pdf.txtExtracted texttext/plain100609https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b91da36d-a7a5-4a16-aacb-da6b848edd7d/download45f04c90e83613897869236d147416bdMD510TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1971https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ef19e37f-8e26-4e9a-8e3d-97f091eb0abc/download0f353d7bc02b115080e20c84d5b24f9bMD512ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain2https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d000d713-a6b6-41cf-8012-780e29ffac1e/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4621https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/54c70753-d6dd-4867-8010-d385c2ff8ccf/downloadde30aaf80c2dcc50d2946a1378e634e2MD58THUMBNAILMANDUJANO_CORNEJO_VIT_POL.pdf.jpgMANDUJANO_CORNEJO_VIT_POL.pdf.jpgGenerated Thumbnailimage/jpeg3499https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0761bc8b-25da-4db9-8968-194792e7a0e6/download6d18405a4d186e168cf289e8c88ebca0MD511TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3337https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/38ef2b08-b3ca-48d8-b43c-d6364e30b66d/download3c545d98dffacee4f5f8368e4766a453MD513ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4786https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/92f9b3b6-c600-40c8-8469-0ac6c8331bda/downloaddf740db8773af3eb2bfc84be07db39abMD57AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5736https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8596a78-c061-4e86-aaed-6dcf14724e8c/download3832e8fe2c9b28d4d154fdce84de694bMD5920.500.12590/17849oai:repositorio.ucsp.edu.pe:20.500.12590/178492023-11-28 16:26:24.528https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.431277 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).