Polyp image segmentation with polyp2seg

Descripción del Articulo

Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational tech...

Descripción completa

Detalles Bibliográficos
Autor: Mandujano Cornejo, Vittorino
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17849
Enlace del recurso:https://hdl.handle.net/20.500.12590/17849
Nivel de acceso:acceso abierto
Materia:Deep learning
Computer visión
Colo-rectal cancer
Image Segmentation
Medical data
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_3cb528227a618db41bbcfc3094502683
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/17849
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Polyp image segmentation with polyp2seg
title Polyp image segmentation with polyp2seg
spellingShingle Polyp image segmentation with polyp2seg
Mandujano Cornejo, Vittorino
Deep learning
Computer visión
Colo-rectal cancer
Image Segmentation
Medical data
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Polyp image segmentation with polyp2seg
title_full Polyp image segmentation with polyp2seg
title_fullStr Polyp image segmentation with polyp2seg
title_full_unstemmed Polyp image segmentation with polyp2seg
title_sort Polyp image segmentation with polyp2seg
author Mandujano Cornejo, Vittorino
author_facet Mandujano Cornejo, Vittorino
author_role author
dc.contributor.advisor.fl_str_mv Montoya Zegarra, Javier Alexander
dc.contributor.author.fl_str_mv Mandujano Cornejo, Vittorino
dc.subject.es_PE.fl_str_mv Deep learning
Computer visión
Colo-rectal cancer
Image Segmentation
Medical data
topic Deep learning
Computer visión
Colo-rectal cancer
Image Segmentation
Medical data
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational techniques, well known as Computed Aided Diagnosis, facilitates diffusion and improves early recognition of potentially cancerous tissues. In this work, we propose a novel hybrid deep learning architecture for polyp image segmentation named Polyp2Seg. The model adopts a transformer architecture as its encoder to extract multi-hierarchical features. Additionally, a novel Feature Aggregation Module (FAM) merges progressively the multilevel features from the encoder to better localise polyps by adding semantic information. Next, a Multi-Context Attention Module (MCAM) removes noise and other artifacts, while incorporating a multi-scale attention mechanism to further improve polyp detection. Quantitative and qualitative experiments on five challenging datasets and over 5 different SOTAs demonstrate that our method significantly improves the segmentation accuracy of Polyps under different evaluation metrics. Our model achieves a new state-of the-art over most of the datasets.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T15:00:28Z
dc.date.available.none.fl_str_mv 2023-11-27T15:00:28Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1080233
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/17849
identifier_str_mv 1080233
url https://hdl.handle.net/20.500.12590/17849
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Católica San Pablo
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/acec3f4e-984c-4cf9-b750-42304fb9efad/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1c72092e-3c95-4665-ae12-a96937105547/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6aa8dc41-484b-489f-ad7e-fc4a2f0f0e1d/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/415a9bff-b457-4f4b-846e-0ac4a38579b8/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ccc5036b-64bc-4562-9339-ba8e3723a343/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b91da36d-a7a5-4a16-aacb-da6b848edd7d/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ef19e37f-8e26-4e9a-8e3d-97f091eb0abc/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d000d713-a6b6-41cf-8012-780e29ffac1e/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/54c70753-d6dd-4867-8010-d385c2ff8ccf/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0761bc8b-25da-4db9-8968-194792e7a0e6/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/38ef2b08-b3ca-48d8-b43c-d6364e30b66d/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/92f9b3b6-c600-40c8-8469-0ac6c8331bda/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8596a78-c061-4e86-aaed-6dcf14724e8c/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
59525ee1a124c71bfc040e26faad8bc4
f482f386ecd877784c619608832af60c
3a4bbe5baff9ef869b4d13df8306c8da
132b2b45130ceab01f65c4dd88ef8eef
45f04c90e83613897869236d147416bd
0f353d7bc02b115080e20c84d5b24f9b
e1c06d85ae7b8b032bef47e42e4c08f9
de30aaf80c2dcc50d2946a1378e634e2
6d18405a4d186e168cf289e8c88ebca0
3c545d98dffacee4f5f8368e4766a453
df740db8773af3eb2bfc84be07db39ab
3832e8fe2c9b28d4d154fdce84de694b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053043964968960
spelling Montoya Zegarra, Javier AlexanderMandujano Cornejo, Vittorino2023-11-27T15:00:28Z2023-11-27T15:00:28Z20231080233https://hdl.handle.net/20.500.12590/17849Colorectal cancer (CRC) is the third most common type of cancer worldwide. It can be prevented by screening the colon and detecting polyps which might become malign. Therefore, an accurate diagnosis of polyps in colonoscopy images is crucial for CRC prevention. The introduction of computational techniques, well known as Computed Aided Diagnosis, facilitates diffusion and improves early recognition of potentially cancerous tissues. In this work, we propose a novel hybrid deep learning architecture for polyp image segmentation named Polyp2Seg. The model adopts a transformer architecture as its encoder to extract multi-hierarchical features. Additionally, a novel Feature Aggregation Module (FAM) merges progressively the multilevel features from the encoder to better localise polyps by adding semantic information. Next, a Multi-Context Attention Module (MCAM) removes noise and other artifacts, while incorporating a multi-scale attention mechanism to further improve polyp detection. Quantitative and qualitative experiments on five challenging datasets and over 5 different SOTAs demonstrate that our method significantly improves the segmentation accuracy of Polyps under different evaluation metrics. Our model achieves a new state-of the-art over most of the datasets.Tesis de maestríaapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Deep learningComputer visiónColo-rectal cancerImage SegmentationMedical datahttps://purl.org/pe-repo/ocde/ford#1.02.01Polyp image segmentation with polyp2seginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional Ciencia de la Computación70512168https://orcid.org/0000-0002-3652-195441312254https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Ochoa Luna, José EduardoDou, QiYang, GuangLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/acec3f4e-984c-4cf9-b750-42304fb9efad/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALMANDUJANO_CORNEJO_VIT_POL.pdfMANDUJANO_CORNEJO_VIT_POL.pdfapplication/pdf30547702https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/1c72092e-3c95-4665-ae12-a96937105547/download59525ee1a124c71bfc040e26faad8bc4MD54TURNITIN.pdfTURNITIN.pdfapplication/pdf23874393https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/6aa8dc41-484b-489f-ad7e-fc4a2f0f0e1d/downloadf482f386ecd877784c619608832af60cMD55ACTA.pdfACTA.pdfapplication/pdf477347https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/415a9bff-b457-4f4b-846e-0ac4a38579b8/download3a4bbe5baff9ef869b4d13df8306c8daMD52AUTORIZACIÓN.pdfAUTORIZACIÓN.pdfapplication/pdf122541https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ccc5036b-64bc-4562-9339-ba8e3723a343/download132b2b45130ceab01f65c4dd88ef8eefMD53TEXTMANDUJANO_CORNEJO_VIT_POL.pdf.txtMANDUJANO_CORNEJO_VIT_POL.pdf.txtExtracted texttext/plain100609https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b91da36d-a7a5-4a16-aacb-da6b848edd7d/download45f04c90e83613897869236d147416bdMD510TURNITIN.pdf.txtTURNITIN.pdf.txtExtracted texttext/plain1971https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ef19e37f-8e26-4e9a-8e3d-97f091eb0abc/download0f353d7bc02b115080e20c84d5b24f9bMD512ACTA.pdf.txtACTA.pdf.txtExtracted texttext/plain2https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d000d713-a6b6-41cf-8012-780e29ffac1e/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56AUTORIZACIÓN.pdf.txtAUTORIZACIÓN.pdf.txtExtracted texttext/plain4621https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/54c70753-d6dd-4867-8010-d385c2ff8ccf/downloadde30aaf80c2dcc50d2946a1378e634e2MD58THUMBNAILMANDUJANO_CORNEJO_VIT_POL.pdf.jpgMANDUJANO_CORNEJO_VIT_POL.pdf.jpgGenerated Thumbnailimage/jpeg3499https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/0761bc8b-25da-4db9-8968-194792e7a0e6/download6d18405a4d186e168cf289e8c88ebca0MD511TURNITIN.pdf.jpgTURNITIN.pdf.jpgGenerated Thumbnailimage/jpeg3337https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/38ef2b08-b3ca-48d8-b43c-d6364e30b66d/download3c545d98dffacee4f5f8368e4766a453MD513ACTA.pdf.jpgACTA.pdf.jpgGenerated Thumbnailimage/jpeg4786https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/92f9b3b6-c600-40c8-8469-0ac6c8331bda/downloaddf740db8773af3eb2bfc84be07db39abMD57AUTORIZACIÓN.pdf.jpgAUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg5736https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/b8596a78-c061-4e86-aaed-6dcf14724e8c/download3832e8fe2c9b28d4d154fdce84de694bMD5920.500.12590/17849oai:repositorio.ucsp.edu.pe:20.500.12590/178492023-11-28 16:26:24.528https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.431277
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).