Timber species automatic identification from Peru Amazonia images using lightweight neural networks

Descripción del Articulo

The correct identification of timber species is a complicated task for the wood industry and government institutions regulating the different laws that ensure legal and transparent commerce. Currently, experts perform this process using the organoleptic characteristics of the wood. However, the meth...

Descripción completa

Detalles Bibliográficos
Autores: Velez A, Fabijańska A, Ferreira CA, Centeno T, Cobden VH, Inga JG, Gamarra D, Tomazello-Filho M
Formato: documento de trabajo
Fecha de Publicación:2022
Institución:Universidad Continental
Repositorio:CONTINENTAL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.continental.edu.pe:20.500.12394/18324
Enlace del recurso:https://hdl.handle.net/20.500.12394/18324
https://doi.org/10.21203/rs.3.rs-1700909/v1
Nivel de acceso:acceso abierto
Materia:Madera
wood
Leyes de conservación
Conservation laws
Industria y comercio
Industry and commerce
https://purl.org/pe-repo/ocde/ford#1.00.00
id UCON_2a2b496a2e515106252693f04e773cce
oai_identifier_str oai:repositorio.continental.edu.pe:20.500.12394/18324
network_acronym_str UCON
network_name_str CONTINENTAL-Institucional
repository_id_str 4517
dc.title.es_PE.fl_str_mv Timber species automatic identification from Peru Amazonia images using lightweight neural networks
title Timber species automatic identification from Peru Amazonia images using lightweight neural networks
spellingShingle Timber species automatic identification from Peru Amazonia images using lightweight neural networks
Velez A
Madera
wood
Leyes de conservación
Conservation laws
Industria y comercio
Industry and commerce
https://purl.org/pe-repo/ocde/ford#1.00.00
title_short Timber species automatic identification from Peru Amazonia images using lightweight neural networks
title_full Timber species automatic identification from Peru Amazonia images using lightweight neural networks
title_fullStr Timber species automatic identification from Peru Amazonia images using lightweight neural networks
title_full_unstemmed Timber species automatic identification from Peru Amazonia images using lightweight neural networks
title_sort Timber species automatic identification from Peru Amazonia images using lightweight neural networks
author Velez A
author_facet Velez A
Fabijańska A
Ferreira CA
Centeno T
Cobden VH
Inga JG
Gamarra D
Tomazello-Filho M
author_role author
author2 Fabijańska A
Ferreira CA
Centeno T
Cobden VH
Inga JG
Gamarra D
Tomazello-Filho M
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Velez A
Fabijańska A
Ferreira CA
Centeno T
Cobden VH
Inga JG
Gamarra D
Tomazello-Filho M
dc.subject.es_PE.fl_str_mv Madera
wood
Leyes de conservación
Conservation laws
Industria y comercio
Industry and commerce
topic Madera
wood
Leyes de conservación
Conservation laws
Industria y comercio
Industry and commerce
https://purl.org/pe-repo/ocde/ford#1.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.00.00
description The correct identification of timber species is a complicated task for the wood industry and government institutions regulating the different laws that ensure legal and transparent commerce. Currently, experts perform this process using the organoleptic characteristics of the wood. However, the methodology used is time-consuming and limited to environmental conditions. Moreover, it has a scalability issue since acquiring this specific knowledge and experience has a slow learning curve. On the other hand, deep learning models have evolved as possible solutions for process automation. Therefore, this paper explores convolutional neural network models suited to run on edge devices. The present study created a database with 25k images of 25 timber species from the Peruvian Amazon. We trained-validated multiple lightweight models (less than 5M). The experiments were made using a repeated stratified k-fold cross-validation approach to estimate the performance of the classifiers. The experiments show that the best model has an F1 score metric of 99.90\% and 58ms latency using 561k parameters. Furthermore, the created model showed an excellent ability to identify species, opening up space for future integration with mobile applications, which helps minimize the time spent and the identification errors on timber identification carried out by experts on control points.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2025-11-05T16:35:38Z
dc.date.available.none.fl_str_mv 2025-11-05T16:35:38Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format workingPaper
status_str publishedVersion
dc.identifier.citation.es_PE.fl_str_mv Velez A, Fabijańska A, Ferreira CA, et al. Timber species automatic identification from Peru Amazonia images using lightweight neural networks. Research Square; 2022. DOI: 10.21203/rs.3.rs-1700909/v1.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12394/18324
dc.identifier.doi.none.fl_str_mv https://doi.org/10.21203/rs.3.rs-1700909/v1
identifier_str_mv Velez A, Fabijańska A, Ferreira CA, et al. Timber species automatic identification from Peru Amazonia images using lightweight neural networks. Research Square; 2022. DOI: 10.21203/rs.3.rs-1700909/v1.
url https://hdl.handle.net/20.500.12394/18324
https://doi.org/10.21203/rs.3.rs-1700909/v1
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv MaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.
dc.relation.uri.es_PE.fl_str_mv https://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/details
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.es_PE.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.accessRights.es_PE.fl_str_mv Acceso abierto
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Attribution 4.0 International (CC BY 4.0)
Acceso abierto
dc.format.es_PE.fl_str_mv application/pdf
dc.format.extent.es_PE.fl_str_mv 19 páginas.
dc.publisher.es_PE.fl_str_mv Universidad Continental
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Continental
Repositorio Institucional - Continental
dc.source.none.fl_str_mv reponame:CONTINENTAL-Institucional
instname:Universidad Continental
instacron:CONTINENTAL
instname_str Universidad Continental
instacron_str CONTINENTAL
institution CONTINENTAL
reponame_str CONTINENTAL-Institucional
collection CONTINENTAL-Institucional
bitstream.url.fl_str_mv https://repositorio.continental.edu.pe/bitstream/20.500.12394/18324/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Continental
repository.mail.fl_str_mv dspaceconti@continental.edu.pe
_version_ 1848871544634212352
spelling Velez AFabijańska AFerreira CACenteno TCobden VHInga JGGamarra DTomazello-Filho M2025-11-05T16:35:38Z2025-11-05T16:35:38Z2022Velez A, Fabijańska A, Ferreira CA, et al. Timber species automatic identification from Peru Amazonia images using lightweight neural networks. Research Square; 2022. DOI: 10.21203/rs.3.rs-1700909/v1.https://hdl.handle.net/20.500.12394/18324https://doi.org/10.21203/rs.3.rs-1700909/v1The correct identification of timber species is a complicated task for the wood industry and government institutions regulating the different laws that ensure legal and transparent commerce. Currently, experts perform this process using the organoleptic characteristics of the wood. However, the methodology used is time-consuming and limited to environmental conditions. Moreover, it has a scalability issue since acquiring this specific knowledge and experience has a slow learning curve. On the other hand, deep learning models have evolved as possible solutions for process automation. Therefore, this paper explores convolutional neural network models suited to run on edge devices. The present study created a database with 25k images of 25 timber species from the Peruvian Amazon. We trained-validated multiple lightweight models (less than 5M). The experiments were made using a repeated stratified k-fold cross-validation approach to estimate the performance of the classifiers. The experiments show that the best model has an F1 score metric of 99.90\% and 58ms latency using 561k parameters. Furthermore, the created model showed an excellent ability to identify species, opening up space for future integration with mobile applications, which helps minimize the time spent and the identification errors on timber identification carried out by experts on control points.Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológicaapplication/pdf19 páginas.engUniversidad ContinentalPEMaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.https://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/detailsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Attribution 4.0 International (CC BY 4.0)Acceso abiertoUniversidad ContinentalRepositorio Institucional - Continentalreponame:CONTINENTAL-Institucionalinstname:Universidad Continentalinstacron:CONTINENTALMaderawoodLeyes de conservaciónConservation lawsIndustria y comercioIndustry and commercehttps://purl.org/pe-repo/ocde/ford#1.00.00Timber species automatic identification from Peru Amazonia images using lightweight neural networksinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.continental.edu.pe/bitstream/20.500.12394/18324/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5120.500.12394/18324oai:repositorio.continental.edu.pe:20.500.12394/183242025-11-05 11:40:10.843Repositorio Continentaldspaceconti@continental.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.404207
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).