Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin

Descripción del Articulo

Flood modeling and forecasting are crucial for managing and preparing for extreme flood events, such as those in the Tropical Andes. In this context, assimilating streamflow data is essential. Data Assimilation (DA) seeks to combine errors between forecasting models and discharge measurements throug...

Descripción completa

Detalles Bibliográficos
Autores: Llauca, Harold, Arestegui, Miguel, Lavado-Casimiro, W.
Formato: artículo
Fecha de Publicación:2023
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/3120
Enlace del recurso:https://hdl.handle.net/20.500.12542/3120
https://doi.org/10.3390/w15223944
Nivel de acceso:acceso abierto
Materia:Inundaciones
Caudal
Flood Forecasting
GR4H Model
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
id SEAM_dc521dc5f6c506e7db5292b234f57709
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/3120
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
title Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
spellingShingle Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
Llauca, Harold
Inundaciones
Caudal
Flood Forecasting
GR4H Model
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
title_short Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
title_full Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
title_fullStr Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
title_full_unstemmed Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
title_sort Constraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basin
author Llauca, Harold
author_facet Llauca, Harold
Arestegui, Miguel
Lavado-Casimiro, W.
author_role author
author2 Arestegui, Miguel
Lavado-Casimiro, W.
author2_role author
author
dc.contributor.author.fl_str_mv Llauca, Harold
Arestegui, Miguel
Lavado-Casimiro, W.
dc.subject.es_PE.fl_str_mv Inundaciones
Caudal
Flood Forecasting
GR4H Model
topic Inundaciones
Caudal
Flood Forecasting
GR4H Model
https://purl.org/pe-repo/ocde/ford#1.05.11
inundaciones - Clima y Eventos Naturales
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.es_PE.fl_str_mv inundaciones - Clima y Eventos Naturales
description Flood modeling and forecasting are crucial for managing and preparing for extreme flood events, such as those in the Tropical Andes. In this context, assimilating streamflow data is essential. Data Assimilation (DA) seeks to combine errors between forecasting models and discharge measurements through the updating of model states. This study aims to assess the applicability and performance of streamflow DA in a sub-daily forecasting system of the Peruvian Tropical Andes using the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) algorithms. The study was conducted in a data-sparse Andean basin during the period February–March 2022. For this purpose, the lumped GR4H rainfall–runoff model was run forward with 100 ensemble members in four different DA experiments based on IMERG-E and GSMaP-NRT precipitation sources and assimilated real-time hourly discharges at the basin outlet. Ensemble modeling with EnKF and PF displayed that perturbation introduced by GSMaP-NRT’-driven experiments reduced the model uncertainties more than IMERG-E’ ones, and the reduction in high-flow subestimation was more notable for the GSMaP-NRT’+EnKF configuration. The ensemble forecasting framework from 1 to 24 h proposed here showed that the updating of model states using DA techniques improved the accuracy of streamflow prediction at least during the first 6–8 h on average, especially for the GSMaP-NRT’+EnKF scheme. Finally, this study benchmarks the application of streamflow DA in data-sparse basins in the Tropical Andes and will support the development of more accurate climate services in Peru.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-02-14T15:42:35Z
dc.date.available.none.fl_str_mv 2024-02-14T15:42:35Z
dc.date.issued.fl_str_mv 2023-11
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/3120
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/w15223944
dc.identifier.journal.es_PE.fl_str_mv Water
dc.identifier.journal.none.fl_str_mv Water
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/3120
url https://hdl.handle.net/20.500.12542/3120
https://doi.org/10.3390/w15223944
identifier_str_mv Water
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:2073-4441
dc.rights.es_PE.fl_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/1/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/3/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/4/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.jpg
bitstream.checksum.fl_str_mv 7c0ac3278a98cce2cab2cd360e16937a
8a4605be74aa9ea9d79846c1fba20a33
9ddd84e6aaf18b15d69243c10e7d8b49
7ba2ea25b9d1bfdd154bbe38bab3b5c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1845699311802777600
spelling Llauca, HaroldArestegui, MiguelLavado-Casimiro, W.2024-02-14T15:42:35Z2024-02-14T15:42:35Z2023-11https://hdl.handle.net/20.500.12542/3120https://doi.org/10.3390/w15223944WaterWaterhttps://hdl.handle.net/20.500.12542/3120Flood modeling and forecasting are crucial for managing and preparing for extreme flood events, such as those in the Tropical Andes. In this context, assimilating streamflow data is essential. Data Assimilation (DA) seeks to combine errors between forecasting models and discharge measurements through the updating of model states. This study aims to assess the applicability and performance of streamflow DA in a sub-daily forecasting system of the Peruvian Tropical Andes using the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) algorithms. The study was conducted in a data-sparse Andean basin during the period February–March 2022. For this purpose, the lumped GR4H rainfall–runoff model was run forward with 100 ensemble members in four different DA experiments based on IMERG-E and GSMaP-NRT precipitation sources and assimilated real-time hourly discharges at the basin outlet. Ensemble modeling with EnKF and PF displayed that perturbation introduced by GSMaP-NRT’-driven experiments reduced the model uncertainties more than IMERG-E’ ones, and the reduction in high-flow subestimation was more notable for the GSMaP-NRT’+EnKF configuration. The ensemble forecasting framework from 1 to 24 h proposed here showed that the updating of model states using DA techniques improved the accuracy of streamflow prediction at least during the first 6–8 h on average, especially for the GSMaP-NRT’+EnKF scheme. Finally, this study benchmarks the application of streamflow DA in data-sparse basins in the Tropical Andes and will support the development of more accurate climate services in Peru.application/pdfspaMDPIPEurn:issn:2073-4441Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIInundacionesCaudalFlood ForecastingGR4H Modelhttps://purl.org/pe-repo/ocde/ford#1.05.11inundaciones - Clima y Eventos NaturalesConstraining Flood Forecasting Uncertainties through Streamflow Data Assimilation in the Tropical Andes of Peru: Case of the Vilcanota River Basininfo:eu-repo/semantics/articletext/publicacion cientificaORIGINALConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdfConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdfTexto Completoapplication/pdf7056287http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/1/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf7c0ac3278a98cce2cab2cd360e16937aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.txtConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.txtExtracted texttext/plain81359http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/3/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.txt9ddd84e6aaf18b15d69243c10e7d8b49MD53THUMBNAILConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.jpgConstraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.jpgGenerated Thumbnailimage/jpeg7108http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3120/4/Constraining-flood-forecasting-uncertainties-through-streamflow_2023.pdf.jpg7ba2ea25b9d1bfdd154bbe38bab3b5c7MD5420.500.12542/3120oai:repositorio.senamhi.gob.pe:20.500.12542/31202025-10-09 17:28:58.995Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.377112
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).