Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru

Descripción del Articulo

The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) i...

Descripción completa

Detalles Bibliográficos
Autores: Moya-álvarez, A.S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., Martínez-Castro, D., Silva, Yamina
Formato: artículo
Fecha de Publicación:2018
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/90
Enlace del recurso:https://hdl.handle.net/20.500.12542/90
https://doi.org/10.3390/atmos9090362
Nivel de acceso:acceso abierto
Materia:Extreme precipitation events
Mantaro basin
Mesoscale processes
Model configuration
Model verification
Synoptic conditions
WRF
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
id SEAM_968f317a2158d64e9807fbdf3290a070
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/90
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.en_US.fl_str_mv Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
title Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
spellingShingle Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
Moya-álvarez, A.S.
Extreme precipitation events
Mantaro basin
Mesoscale processes
Model configuration
Model verification
Synoptic conditions
WRF
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
title_short Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
title_full Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
title_fullStr Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
title_full_unstemmed Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
title_sort Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru
author Moya-álvarez, A.S.
author_facet Moya-álvarez, A.S.
Gálvez, J.
Holguín, A.
Estevan, R.
Kumar, S.
Villalobos, E.
Martínez-Castro, D.
Silva, Yamina
author_role author
author2 Gálvez, J.
Holguín, A.
Estevan, R.
Kumar, S.
Villalobos, E.
Martínez-Castro, D.
Silva, Yamina
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Moya-álvarez, A.S.
Gálvez, J.
Holguín, A.
Estevan, R.
Kumar, S.
Villalobos, E.
Martínez-Castro, D.
Silva, Yamina
dc.subject.en_US.fl_str_mv Extreme precipitation events
Mantaro basin
Mesoscale processes
Model configuration
Model verification
Synoptic conditions
WRF
topic Extreme precipitation events
Mantaro basin
Mesoscale processes
Model configuration
Model verification
Synoptic conditions
WRF
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Clima y Eventos Naturales
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.es_PE.fl_str_mv precipitacion - Clima y Eventos Naturales
description The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. We first establish that atypical events in the region are those with more than 27 mm of rainfall per day when averaging over all the stations. More than 50% of the selected cases occurred during January, February, and April, with the most extreme occurring during February. The average synoptic conditions show negative geopotential anomalies and positive humidity anomalies in 700 and 500 hPa. At 200 hPa, the subtropical upper ridge or “Bolivian high“ was present, with its northern divergent flank over the Mantaro basin. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50-60% of cases, mainly in the south of the basin and in the extreme west along the mountain range. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, apparently related to processes of larger scales; limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall; and limitations on the microphysics scheme to generate heavy rainfall.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2019-07-27T20:31:46Z
dc.date.available.none.fl_str_mv 2019-07-27T20:31:46Z
dc.date.issued.fl_str_mv 2018-09
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format article
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/90
dc.identifier.isni.none.fl_str_mv 0000 0001 0746 0446
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/atmos9090362
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/90
url https://hdl.handle.net/20.500.12542/90
https://doi.org/10.3390/atmos9090362
identifier_str_mv 0000 0001 0746 0446
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2073-4433
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
Reconocimiento - No comercial - Compartir igual (CC BY-NC-SA)
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Reconocimiento - No comercial - Compartir igual (CC BY-NC-SA)
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI AG
dc.source.es_PE.fl_str_mv Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio Institucional - SENAMHI
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
dc.source.volume.es_PE.fl_str_mv 9
dc.source.issue.es_PE.fl_str_mv 9
dc.source.journal.es_PE.fl_str_mv Atmosphere
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/1/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/4/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/5/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.jpg
bitstream.checksum.fl_str_mv b3cece219093b1524e7f5d3801d8d961
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
c51e88c2531e19dfaa5d8b144b551e91
8215879645a1faa7cd6277cfdbafa417
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1847601861319720960
spelling Moya-álvarez, A.S.Gálvez, J.Holguín, A.Estevan, R.Kumar, S.Villalobos, E.Martínez-Castro, D.Silva, Yamina2019-07-27T20:31:46Z2019-07-27T20:31:46Z2018-09https://hdl.handle.net/20.500.12542/900000 0001 0746 0446https://doi.org/10.3390/atmos9090362https://hdl.handle.net/20.500.12542/90The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. We first establish that atypical events in the region are those with more than 27 mm of rainfall per day when averaging over all the stations. More than 50% of the selected cases occurred during January, February, and April, with the most extreme occurring during February. The average synoptic conditions show negative geopotential anomalies and positive humidity anomalies in 700 and 500 hPa. At 200 hPa, the subtropical upper ridge or “Bolivian high“ was present, with its northern divergent flank over the Mantaro basin. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50-60% of cases, mainly in the south of the basin and in the extreme west along the mountain range. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, apparently related to processes of larger scales; limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall; and limitations on the microphysics scheme to generate heavy rainfall.Por paresapplication/pdfengMDPI AGurn:issn:2073-4433info:eu-repo/semantics/openAccessReconocimiento - No comercial - Compartir igual (CC BY-NC-SA)https://creativecommons.org/licenses/by-nc-sa/4.0/Servicio Nacional de Meteorología e Hidrología del PerúRepositorio Institucional - SENAMHI99Atmospherereponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIExtreme precipitation eventsMantaro basinMesoscale processesModel configurationModel verificationSynoptic conditionsWRFhttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Clima y Eventos NaturalesExtreme rainfall forecast with the WRF-ARW model in the Central Andes of Peruinfo:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdfMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdfapplication/pdf16563002http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/1/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdfb3cece219093b1524e7f5d3801d8d961MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.txtMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.txtExtracted texttext/plain69892http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/4/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.txtc51e88c2531e19dfaa5d8b144b551e91MD54THUMBNAILMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.jpgMoya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.jpgGenerated Thumbnailimage/jpeg6720http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/90/5/Moya-alvarez-2018-Extreme-rainfall-forecast-with-the-.pdf.jpg8215879645a1faa7cd6277cfdbafa417MD5520.500.12542/90oai:repositorio.senamhi.gob.pe:20.500.12542/902025-10-23 17:05:03.954Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.926661
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).