Snow-Hydrological modeling using remote sensing data in Vilcanota basin

Descripción del Articulo

Water resources availability in the southern Andes of Peru is being affected by glacier and snow retreat. This problem is already perceived in the Vilcanota river basin, where hydro-climatological information is scarce. In this particular mountain context, any water plan represents a great challenge...

Descripción completa

Detalles Bibliográficos
Autores: Risco Sence, Eber, Lavado-Casimiro, W., Rau, Pedro
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/1022
Enlace del recurso:https://hdl.handle.net/20.500.12542/1022
https://doi.org/10.5194/egusphere-egu2020-11515
Nivel de acceso:acceso abierto
Materia:Recursos Hídricos
Glaciares
Nieve
Cuencas
Modelos y Simulación
https://purl.org/pe-repo/ocde/ford#1.05.11
variabilidad climatica - Clima y Eventos Naturales
id SEAM_93190b67c04e558edd0e8573905d1745
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/1022
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Snow-Hydrological modeling using remote sensing data in Vilcanota basin
title Snow-Hydrological modeling using remote sensing data in Vilcanota basin
spellingShingle Snow-Hydrological modeling using remote sensing data in Vilcanota basin
Risco Sence, Eber
Recursos Hídricos
Glaciares
Nieve
Cuencas
Modelos y Simulación
https://purl.org/pe-repo/ocde/ford#1.05.11
variabilidad climatica - Clima y Eventos Naturales
title_short Snow-Hydrological modeling using remote sensing data in Vilcanota basin
title_full Snow-Hydrological modeling using remote sensing data in Vilcanota basin
title_fullStr Snow-Hydrological modeling using remote sensing data in Vilcanota basin
title_full_unstemmed Snow-Hydrological modeling using remote sensing data in Vilcanota basin
title_sort Snow-Hydrological modeling using remote sensing data in Vilcanota basin
author Risco Sence, Eber
author_facet Risco Sence, Eber
Lavado-Casimiro, W.
Rau, Pedro
author_role author
author2 Lavado-Casimiro, W.
Rau, Pedro
author2_role author
author
dc.contributor.author.fl_str_mv Risco Sence, Eber
Lavado-Casimiro, W.
Rau, Pedro
dc.subject.es_PE.fl_str_mv Recursos Hídricos
Glaciares
Nieve
Cuencas
Modelos y Simulación
topic Recursos Hídricos
Glaciares
Nieve
Cuencas
Modelos y Simulación
https://purl.org/pe-repo/ocde/ford#1.05.11
variabilidad climatica - Clima y Eventos Naturales
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv variabilidad climatica - Clima y Eventos Naturales
description Water resources availability in the southern Andes of Peru is being affected by glacier and snow retreat. This problem is already perceived in the Vilcanota river basin, where hydro-climatological information is scarce. In this particular mountain context, any water plan represents a great challenge. To cope with these limitations, we propose to assess the space-time consistency of 10 satellite-based precipitation products (CMORPH–CRT v.1, CMORPH–BLD v.1, CHIRP v.2, CHIRPS v.2, GSMaP v.6, GSMaP correction, MSWEP v.2.1, PERSIANN, PERSIANN–CDR, TRMM 3B42) with 25 rain gauge stations in order to select the best product that represents the variability in the Vilcanota basin. For this purpose, through a direct evaluation of sensitivity analysis via the GR4J parsimonious hydrological model over the basin. GSMap v.6, TRMM 3B42 and CHIRPS were selected to represent rainfall spatial variability according with different statistical criteria, such as correlation coefficient (CC), standard deviation (SD), percentage of bias (%B) and centered mean square error (CRMSE). To facilitate the interpretation of statistical results, Taylor's diagram was used to represent the CC statistics, normalized values of SD and CRMSE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-30T19:39:52Z
dc.date.available.none.fl_str_mv 2021-06-30T19:39:52Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.sinia.none.fl_str_mv text/libro.presentacion
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Risco, E., Lavado, W., and Rau, P. (2020) Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11515, https://doi.org/10.5194/egusphere-egu2020-11515
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/1022
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/egusphere-egu2020-11515
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/1022
https://hdl.handle.net/20.500.12542/1022
identifier_str_mv Risco, E., Lavado, W., and Rau, P. (2020) Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11515, https://doi.org/10.5194/egusphere-egu2020-11515
url https://hdl.handle.net/20.500.12542/1022
https://doi.org/10.5194/egusphere-egu2020-11515
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.uri.es_PE.fl_str_mv https://meetingorganizer.copernicus.org/EGU2020/EGU2020-11515.html
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv European Geosciences Union
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/1/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/4/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/5/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.jpg
bitstream.checksum.fl_str_mv aee46844c9eb2b1a2f6de0b84a8bd406
9868ccc48a14c8d591352b6eaf7f6239
8a4605be74aa9ea9d79846c1fba20a33
d390305aed36daa6f1f8e6a36657fa6e
f20a5550f8a32e0764c45b170106bd4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916940125634560
spelling Risco Sence, EberLavado-Casimiro, W.Rau, Pedro2021-06-30T19:39:52Z2021-06-30T19:39:52Z2020Risco, E., Lavado, W., and Rau, P. (2020) Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11515, https://doi.org/10.5194/egusphere-egu2020-11515https://hdl.handle.net/20.500.12542/1022https://doi.org/10.5194/egusphere-egu2020-11515https://hdl.handle.net/20.500.12542/1022https://hdl.handle.net/20.500.12542/1022Water resources availability in the southern Andes of Peru is being affected by glacier and snow retreat. This problem is already perceived in the Vilcanota river basin, where hydro-climatological information is scarce. In this particular mountain context, any water plan represents a great challenge. To cope with these limitations, we propose to assess the space-time consistency of 10 satellite-based precipitation products (CMORPH–CRT v.1, CMORPH–BLD v.1, CHIRP v.2, CHIRPS v.2, GSMaP v.6, GSMaP correction, MSWEP v.2.1, PERSIANN, PERSIANN–CDR, TRMM 3B42) with 25 rain gauge stations in order to select the best product that represents the variability in the Vilcanota basin. For this purpose, through a direct evaluation of sensitivity analysis via the GR4J parsimonious hydrological model over the basin. GSMap v.6, TRMM 3B42 and CHIRPS were selected to represent rainfall spatial variability according with different statistical criteria, such as correlation coefficient (CC), standard deviation (SD), percentage of bias (%B) and centered mean square error (CRMSE). To facilitate the interpretation of statistical results, Taylor's diagram was used to represent the CC statistics, normalized values of SD and CRMSE.application/pdfengEuropean Geosciences Unionhttps://meetingorganizer.copernicus.org/EGU2020/EGU2020-11515.htmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIRecursos HídricosGlaciaresNieveCuencasModelos y Simulaciónhttps://purl.org/pe-repo/ocde/ford#1.05.11variabilidad climatica - Clima y Eventos NaturalesSnow-Hydrological modeling using remote sensing data in Vilcanota basininfo:eu-repo/semantics/conferenceObjecttext/libro.presentacionORIGINALSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdfSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdfTexto Completoapplication/pdf298097http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/1/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdfaee46844c9eb2b1a2f6de0b84a8bd406MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.txtSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.txtExtracted texttext/plain2560http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/4/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.txtd390305aed36daa6f1f8e6a36657fa6eMD54THUMBNAILSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.jpgSnow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.jpgGenerated Thumbnailimage/jpeg5439http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1022/5/Snow-Hydrological-modeling-using-remote-sensing-data-in-Vilcanota-basin-Peru.pdf.jpgf20a5550f8a32e0764c45b170106bd4fMD5520.500.12542/1022oai:repositorio.senamhi.gob.pe:20.500.12542/10222024-08-22 17:12:22.324Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).