Surface water resources assessment in Peru through SWAT hydrological model

Descripción del Articulo

Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools)...

Descripción completa

Detalles Bibliográficos
Autores: Asurza Véliz, Flavio Alexander, Traverso-Yucra, Kevin Arnold, Lavado-Casimiro, W., Felipe-Obando, Oscar, Montesinos Cáceres, Cristian Albert, Llauca, Harold
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/1017
Enlace del recurso:https://hdl.handle.net/20.500.12542/1017
https://doi.org/10.5194/egusphere-egu2020-6308
Nivel de acceso:acceso abierto
Materia:Hydrological Model
Modelos y Simulación
SWAT Model
Caudal
Cuenca Hidrográfica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
id SEAM_0a1d3e5b588536aab6b7d677809ce5cf
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/1017
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Surface water resources assessment in Peru through SWAT hydrological model
title Surface water resources assessment in Peru through SWAT hydrological model
spellingShingle Surface water resources assessment in Peru through SWAT hydrological model
Asurza Véliz, Flavio Alexander
Hydrological Model
Modelos y Simulación
SWAT Model
Caudal
Cuenca Hidrográfica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
title_short Surface water resources assessment in Peru through SWAT hydrological model
title_full Surface water resources assessment in Peru through SWAT hydrological model
title_fullStr Surface water resources assessment in Peru through SWAT hydrological model
title_full_unstemmed Surface water resources assessment in Peru through SWAT hydrological model
title_sort Surface water resources assessment in Peru through SWAT hydrological model
author Asurza Véliz, Flavio Alexander
author_facet Asurza Véliz, Flavio Alexander
Traverso-Yucra, Kevin Arnold
Lavado-Casimiro, W.
Felipe-Obando, Oscar
Montesinos Cáceres, Cristian Albert
Llauca, Harold
author_role author
author2 Traverso-Yucra, Kevin Arnold
Lavado-Casimiro, W.
Felipe-Obando, Oscar
Montesinos Cáceres, Cristian Albert
Llauca, Harold
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Asurza Véliz, Flavio Alexander
Traverso-Yucra, Kevin Arnold
Lavado-Casimiro, W.
Felipe-Obando, Oscar
Montesinos Cáceres, Cristian Albert
Llauca, Harold
dc.subject.es_PE.fl_str_mv Hydrological Model
Modelos y Simulación
SWAT Model
Caudal
Cuenca Hidrográfica
topic Hydrological Model
Modelos y Simulación
SWAT Model
Caudal
Cuenca Hidrográfica
Cuencas
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
dc.subject.none.fl_str_mv Cuencas
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv gestion de recursos hidricos de cuenca - Agua
description Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools) model, with the goal of estimating the streamflow for three hydrographic regions in Peru: the Pacific, Titicaca and Amazonas. Hydrological models were calibrated using observed discharge data which is sparse and poorly distributed over Peru. In this context, we design a regional parameter estimation following the next steps: i) First, a regionalization of 3394 hydrological response units (HRU) in the whole country were built through Ward’s hierarchical cluster criterion, in which 14 calibration regions were defined. ii) A calibration procedure to obtain the best calibration parameters was made with Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization using the Kling-Gupta (KGE) and Nash Sutcliffe Logarithmic (LogNSE) statistics. A total of 31 hydrological stations were selected to calibration and validation procedure with the condition of leaving at least one in each region defined at point i) iii) Using the physical similarity approach, each set of calibrated parameters was averaged in each region to get the regional parameter sets.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-30T15:26:17Z
dc.date.available.none.fl_str_mv 2021-06-30T15:26:17Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.sinia.none.fl_str_mv text/libro.presentacion
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/1017
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/egusphere-egu2020-6308
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/1017
identifier_str_mv Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308
url https://hdl.handle.net/20.500.12542/1017
https://doi.org/10.5194/egusphere-egu2020-6308
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.uri.es_PE.fl_str_mv https://meetingorganizer.copernicus.org/EGU2020/EGU2020-6308.html
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv European Geosciences Union
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/1/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/4/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/5/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpg
bitstream.checksum.fl_str_mv 2c37739e689325c17831d59ddabdac3c
9868ccc48a14c8d591352b6eaf7f6239
8a4605be74aa9ea9d79846c1fba20a33
09ed2e20c176b8b6b564e228a1926538
4b2aa06cf6b5e10a3bb6ebd3a97b63d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916940761071616
spelling Asurza Véliz, Flavio AlexanderTraverso-Yucra, Kevin ArnoldLavado-Casimiro, W.Felipe-Obando, OscarMontesinos Cáceres, Cristian AlbertLlauca, Harold2021-06-30T15:26:17Z2021-06-30T15:26:17Z2020Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308https://hdl.handle.net/20.500.12542/1017https://doi.org/10.5194/egusphere-egu2020-6308https://hdl.handle.net/20.500.12542/1017Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools) model, with the goal of estimating the streamflow for three hydrographic regions in Peru: the Pacific, Titicaca and Amazonas. Hydrological models were calibrated using observed discharge data which is sparse and poorly distributed over Peru. In this context, we design a regional parameter estimation following the next steps: i) First, a regionalization of 3394 hydrological response units (HRU) in the whole country were built through Ward’s hierarchical cluster criterion, in which 14 calibration regions were defined. ii) A calibration procedure to obtain the best calibration parameters was made with Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization using the Kling-Gupta (KGE) and Nash Sutcliffe Logarithmic (LogNSE) statistics. A total of 31 hydrological stations were selected to calibration and validation procedure with the condition of leaving at least one in each region defined at point i) iii) Using the physical similarity approach, each set of calibrated parameters was averaged in each region to get the regional parameter sets.application/pdfengEuropean Geosciences Unionhttps://meetingorganizer.copernicus.org/EGU2020/EGU2020-6308.htmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIHydrological ModelModelos y SimulaciónSWAT ModelCaudalCuenca HidrográficaCuencashttps://purl.org/pe-repo/ocde/ford#1.05.11gestion de recursos hidricos de cuenca - AguaSurface water resources assessment in Peru through SWAT hydrological modelinfo:eu-repo/semantics/conferenceObjecttext/libro.presentacionORIGINALSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdfSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdfTexto Completoapplication/pdf298307http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/1/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf2c37739e689325c17831d59ddabdac3cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txtSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txtExtracted texttext/plain2833http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/4/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txt09ed2e20c176b8b6b564e228a1926538MD54THUMBNAILSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpgSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpgGenerated Thumbnailimage/jpeg5627http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/5/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpg4b2aa06cf6b5e10a3bb6ebd3a97b63d3MD5520.500.12542/1017oai:repositorio.senamhi.gob.pe:20.500.12542/10172024-08-22 16:09:39.94Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.766599
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).