Surface water resources assessment in Peru through SWAT hydrological model
Descripción del Articulo
Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools)...
Autores: | , , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2020 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/1017 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/1017 https://doi.org/10.5194/egusphere-egu2020-6308 |
Nivel de acceso: | acceso abierto |
Materia: | Hydrological Model Modelos y Simulación SWAT Model Caudal Cuenca Hidrográfica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 gestion de recursos hidricos de cuenca - Agua |
id |
SEAM_0a1d3e5b588536aab6b7d677809ce5cf |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/1017 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.es_PE.fl_str_mv |
Surface water resources assessment in Peru through SWAT hydrological model |
title |
Surface water resources assessment in Peru through SWAT hydrological model |
spellingShingle |
Surface water resources assessment in Peru through SWAT hydrological model Asurza Véliz, Flavio Alexander Hydrological Model Modelos y Simulación SWAT Model Caudal Cuenca Hidrográfica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 gestion de recursos hidricos de cuenca - Agua |
title_short |
Surface water resources assessment in Peru through SWAT hydrological model |
title_full |
Surface water resources assessment in Peru through SWAT hydrological model |
title_fullStr |
Surface water resources assessment in Peru through SWAT hydrological model |
title_full_unstemmed |
Surface water resources assessment in Peru through SWAT hydrological model |
title_sort |
Surface water resources assessment in Peru through SWAT hydrological model |
author |
Asurza Véliz, Flavio Alexander |
author_facet |
Asurza Véliz, Flavio Alexander Traverso-Yucra, Kevin Arnold Lavado-Casimiro, W. Felipe-Obando, Oscar Montesinos Cáceres, Cristian Albert Llauca, Harold |
author_role |
author |
author2 |
Traverso-Yucra, Kevin Arnold Lavado-Casimiro, W. Felipe-Obando, Oscar Montesinos Cáceres, Cristian Albert Llauca, Harold |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Asurza Véliz, Flavio Alexander Traverso-Yucra, Kevin Arnold Lavado-Casimiro, W. Felipe-Obando, Oscar Montesinos Cáceres, Cristian Albert Llauca, Harold |
dc.subject.es_PE.fl_str_mv |
Hydrological Model Modelos y Simulación SWAT Model Caudal Cuenca Hidrográfica |
topic |
Hydrological Model Modelos y Simulación SWAT Model Caudal Cuenca Hidrográfica Cuencas https://purl.org/pe-repo/ocde/ford#1.05.11 gestion de recursos hidricos de cuenca - Agua |
dc.subject.none.fl_str_mv |
Cuencas |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.sinia.none.fl_str_mv |
gestion de recursos hidricos de cuenca - Agua |
description |
Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools) model, with the goal of estimating the streamflow for three hydrographic regions in Peru: the Pacific, Titicaca and Amazonas. Hydrological models were calibrated using observed discharge data which is sparse and poorly distributed over Peru. In this context, we design a regional parameter estimation following the next steps: i) First, a regionalization of 3394 hydrological response units (HRU) in the whole country were built through Ward’s hierarchical cluster criterion, in which 14 calibration regions were defined. ii) A calibration procedure to obtain the best calibration parameters was made with Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization using the Kling-Gupta (KGE) and Nash Sutcliffe Logarithmic (LogNSE) statistics. A total of 31 hydrological stations were selected to calibration and validation procedure with the condition of leaving at least one in each region defined at point i) iii) Using the physical similarity approach, each set of calibrated parameters was averaged in each region to get the regional parameter sets. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-30T15:26:17Z |
dc.date.available.none.fl_str_mv |
2021-06-30T15:26:17Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.sinia.none.fl_str_mv |
text/libro.presentacion |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/1017 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5194/egusphere-egu2020-6308 |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/1017 |
identifier_str_mv |
Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308 |
url |
https://hdl.handle.net/20.500.12542/1017 https://doi.org/10.5194/egusphere-egu2020-6308 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.es_PE.fl_str_mv |
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-6308.html |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
European Geosciences Union |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/1/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/2/license_rdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/3/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/4/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/5/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
2c37739e689325c17831d59ddabdac3c 9868ccc48a14c8d591352b6eaf7f6239 8a4605be74aa9ea9d79846c1fba20a33 09ed2e20c176b8b6b564e228a1926538 4b2aa06cf6b5e10a3bb6ebd3a97b63d3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1808916940761071616 |
spelling |
Asurza Véliz, Flavio AlexanderTraverso-Yucra, Kevin ArnoldLavado-Casimiro, W.Felipe-Obando, OscarMontesinos Cáceres, Cristian AlbertLlauca, Harold2021-06-30T15:26:17Z2021-06-30T15:26:17Z2020Asurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308https://hdl.handle.net/20.500.12542/1017https://doi.org/10.5194/egusphere-egu2020-6308https://hdl.handle.net/20.500.12542/1017Surface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools) model, with the goal of estimating the streamflow for three hydrographic regions in Peru: the Pacific, Titicaca and Amazonas. Hydrological models were calibrated using observed discharge data which is sparse and poorly distributed over Peru. In this context, we design a regional parameter estimation following the next steps: i) First, a regionalization of 3394 hydrological response units (HRU) in the whole country were built through Ward’s hierarchical cluster criterion, in which 14 calibration regions were defined. ii) A calibration procedure to obtain the best calibration parameters was made with Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization using the Kling-Gupta (KGE) and Nash Sutcliffe Logarithmic (LogNSE) statistics. A total of 31 hydrological stations were selected to calibration and validation procedure with the condition of leaving at least one in each region defined at point i) iii) Using the physical similarity approach, each set of calibrated parameters was averaged in each region to get the regional parameter sets.application/pdfengEuropean Geosciences Unionhttps://meetingorganizer.copernicus.org/EGU2020/EGU2020-6308.htmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIHydrological ModelModelos y SimulaciónSWAT ModelCaudalCuenca HidrográficaCuencashttps://purl.org/pe-repo/ocde/ford#1.05.11gestion de recursos hidricos de cuenca - AguaSurface water resources assessment in Peru through SWAT hydrological modelinfo:eu-repo/semantics/conferenceObjecttext/libro.presentacionORIGINALSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdfSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdfTexto Completoapplication/pdf298307http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/1/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf2c37739e689325c17831d59ddabdac3cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txtSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txtExtracted texttext/plain2833http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/4/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.txt09ed2e20c176b8b6b564e228a1926538MD54THUMBNAILSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpgSurface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpgGenerated Thumbnailimage/jpeg5627http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1017/5/Surface-water-resources-assessment-in-Peru-through-SWAT-hydrological-model_2020.pdf.jpg4b2aa06cf6b5e10a3bb6ebd3a97b63d3MD5520.500.12542/1017oai:repositorio.senamhi.gob.pe:20.500.12542/10172024-08-22 16:09:39.94Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.766599 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).