Aplicación de DEEP LEARNING y procesamiento de imágenes satelitales para el análisis temporal del retroceso superficial del glaciar Quelccaya en la cordillera Vilcanota, Perú

Descripción del Articulo

En las últimas décadas, los glaciares tropicales han retrocedido significativamente debido al calentamiento global, afectando la hidrología y el paisaje montañoso, y aumentando los riesgos asociados. Su monitoreo es esencial para cuantificar estas variaciones, dado su rol como reservas de agua dulce...

Descripción completa

Detalles Bibliográficos
Autor: Quispe Quispe, Andres Benjamin
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/10224
Enlace del recurso:http://hdl.handle.net/20.500.12918/10224
Nivel de acceso:acceso abierto
Materia:Teledetección
Landsat
Procesamiento de imágenes
Deep learning
Segmentación semántica
http://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:En las últimas décadas, los glaciares tropicales han retrocedido significativamente debido al calentamiento global, afectando la hidrología y el paisaje montañoso, y aumentando los riesgos asociados. Su monitoreo es esencial para cuantificar estas variaciones, dado su rol como reservas de agua dulce e indicadores del cambio climático. Las técnicas de teledetección, ampliamente utilizadas desde la década de 1970, permiten detectar vegetación, agua, glaciares, etc. La comunidad científica emplea estos datos para el monitoreo de la cobertura del suelo, incluida la detección de cuerpos glaciares. Estudios previos han usado índices espectrales para detectar y segmentar glaciares; sin embargo, estos métodos presentan limitaciones y pueden ser complejos cuando se trata de inventariar glaciares extensos con precisión. Por otro lado, los métodos de aprendizaje profundo han demostrado ser muy eficientes para el procesamiento y segmentación de imágenes en diversas disciplinas. Este estudio analiza temporalmente la variación del glaciar Quelccaya, en la cordillera de Vilcanota entre Cusco y Puno, en el periodo 1991-2024. Se emplean métodos de aprendizaje profundo junto con datos ópticos de teledetección de las misiones Landsat, generando un conjunto de datos de 2400 muestras para tareas de segmentación semántica y el entrenamiento de un modelo de deep learning que extrae automáticamente cuerpos glaciares a partir de imágenes multiespectrales. Se proponen tres modelos de deep learning: U-Net, DeepResUnet y DeepLabV3Plus, todos para segmentación semántica. Estos modelos se entrenaron con el 70% de las muestras, usando el 15% para validación y el 15% para evaluación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).