Eficiencia de los índices de vegetación espectral para identificar procesos de escorrentías dominantes, en la quebrada Arapato, distrito de Tamburco, provincia de Abancay, región de Apurímac

Descripción del Articulo

La presente investigación determinó la eficiencia de tres índices espectrales de vegetación, derivados de una imagen satelital Sentinel 2B, para identificar Procesos de Escorrentías Dominantes (DRP); el método para identificar los DRP fue mediante un procedimiento manual estandarizado evaluado in si...

Descripción completa

Detalles Bibliográficos
Autor: Quispe Almontes, Jhon Gregory
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/6076
Enlace del recurso:http://hdl.handle.net/20.500.12918/6076
Nivel de acceso:acceso abierto
Materia:Escorrentías dominantes
Vegetación
Índice espectral
Algoritmos inteligentes
http://purl.org/pe-repo/ocde/ford#1.06.16
Descripción
Sumario:La presente investigación determinó la eficiencia de tres índices espectrales de vegetación, derivados de una imagen satelital Sentinel 2B, para identificar Procesos de Escorrentías Dominantes (DRP); el método para identificar los DRP fue mediante un procedimiento manual estandarizado evaluado in situ, teledetección y el uso de algoritmos inteligentes (machine learning). Los datos medidos en campo, fueron comparados con valores de reflectancia del Índice de Vegetación de Diferencia Normalizada (NDVI), Índice de Suelo Desnudo (BSI) e Índice de Vegetación Ajustado a la Humedad (MAVI). Los resultados obtenidos muestran que con un nivel de significancia (p>0.05), el Modelo Aditivo Generalizado GAM2 aplicado sobre el NDVI y el MAVI permiten predecir a un 67% los tipos de escorrentías identificados in situ, cuyo valor de AIC del modelo es igual a 50.4, y un RMSE de 0.36. En un perfil espectral de DRP, la banda del infrarrojo cercano, muestra diferentes valores de reflectancia para distinguir los tipos de escorrentías. Para el mapeo de los DRP de toda la zona de estudio, se entrenó y evaluó algoritmos inteligentes, verificándose que el algoritmo de Bosque Aleatorio (RF) presenta una exactitud del 67%, para identificar el Flujo Terrestre Hortoniano Retardado (HOF2 = 16.6%), Flujo Terrestre Saturado Retardado (SOF2 = 3.2%), Flujo Subsuperficial Retardado (SSF2 = 75.7%), y Percolación Profunda (DP = 4.5%). Por lo tanto, la conclusión de la investigación, demuestra que los índices evaluados a partir de las bandas espectrales, obtenidos de una imagen del satélite Sentinel 2B, son eficientes en un 67%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).