"ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"

Descripción del Articulo

Con la presente investigación se ha construido un modelo de Inteligencia Artificial (Redes Neuronales Artificiales), que permita predecir el tiempo de demora de las intersecciones estudiadas. Para lograr el objetivo del proyecto de investigación se ha hecho el estudio de 8 intersecciones durante un...

Descripción completa

Detalles Bibliográficos
Autores: De la Cruz Lopez, Huber, Jurado Mamani, Víctor Raúl
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional de Huancavelica
Repositorio:UNH-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unh.edu.pe:20.500.14597/3064
Enlace del recurso:http://repositorio.unh.edu.pe/handle/UNH/3064
Nivel de acceso:acceso abierto
Materia:Congestionamiento Vehicular
Predicción
Redes Neuronales Artificiales
Transportes
id RUNH_ff74ed66af8746519d98215e4499d8e0
oai_identifier_str oai:repositorio.unh.edu.pe:20.500.14597/3064
network_acronym_str RUNH
network_name_str UNH-Institucional
repository_id_str .
dc.title.es_PE.fl_str_mv "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
title "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
spellingShingle "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
De la Cruz Lopez, Huber
Congestionamiento Vehicular
Predicción
Redes Neuronales Artificiales
Transportes
title_short "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
title_full "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
title_fullStr "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
title_full_unstemmed "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
title_sort "ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"
author De la Cruz Lopez, Huber
author_facet De la Cruz Lopez, Huber
Jurado Mamani, Víctor Raúl
author_role author
author2 Jurado Mamani, Víctor Raúl
author2_role author
dc.contributor.advisor.fl_str_mv Ayala Bizarro, Iván Arturo
dc.contributor.author.fl_str_mv De la Cruz Lopez, Huber
Jurado Mamani, Víctor Raúl
dc.subject.none.fl_str_mv Congestionamiento Vehicular
Predicción
Redes Neuronales Artificiales
topic Congestionamiento Vehicular
Predicción
Redes Neuronales Artificiales
Transportes
dc.subject.ocde.es_PE.fl_str_mv Transportes
description Con la presente investigación se ha construido un modelo de Inteligencia Artificial (Redes Neuronales Artificiales), que permita predecir el tiempo de demora de las intersecciones estudiadas. Para lograr el objetivo del proyecto de investigación se ha hecho el estudio de 8 intersecciones durante un periodo de tres meses. Siguiendo el análisis de cada intersección mediante la metodología HCM, para el procesamiento de datos para la construcción del modelo de la red neuronal artificial con la siguiente estructura: 10 variables de ingreso, las cuales son (tasa de flujo ajustada, tasa de flujo de saturación ajustada, relación de flujo, tiempo efectivo de luz verde, ciclo semafórico, la razón de luz verde, capacidad, razón, demora uniforme, demora residual); la cual para el entrenamiento se hizo diversas simulaciones haciendo el uso de la metodología de propagación inversa (back propagation), buscando el óptimo error cuadrático medio (MSE). La valoración se realizó en dos grupos de muestra: el primero de entrenamiento (training), y el segundo de validación (test) de los datos obtenidos de las intersecciones, usando la herramienta del sofware Matlab(toolbox). Los resultados obtenidos del proyecto de investigación evaluados mediante el análisis estadístico de error medio cuadrático (MSE), se dividen en: entrenamiento (64% de los datos), validación y prueba del (36% de los datos), y el modelo total (100% de los datos), donde el modelo total presenta una buena correlación siendo el entrenamiento(training) R=0.99976, validación R=0.99974, test R=0.99977, y obteniéndose un modelo de la Red Neuronal Artificial con R=0.99976, siendo R el coeficiente de determinación conocido como coeficiente de correlación Pearson, la cual demostrando ser eficaz para predecir el tiempo de demora del nivel de servicio de las intersecciones, se concluye que el modelo de la red neuronal artificial contribuye para predecir el tiempo de demora del nivel de servicio y así optimizar el congestionamiento vehicular. Palabras claves: Congestionamiento Vehicular, Predicción, Redes Neuronales Artificiales
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-06-11T16:13:18Z
dc.date.available.none.fl_str_mv 2020-06-11T16:13:18Z
dc.date.issued.fl_str_mv 2019-11-22
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.unh.edu.pe/handle/UNH/3064
url http://repositorio.unh.edu.pe/handle/UNH/3064
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional de Huancavelica
dc.publisher.country.none.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - UNH
Universidad Nacional de Huancavelica
dc.source.none.fl_str_mv reponame:UNH-Institucional
instname:Universidad Nacional de Huancavelica
instacron:UNH
instname_str Universidad Nacional de Huancavelica
instacron_str UNH
institution UNH
reponame_str UNH-Institucional
collection UNH-Institucional
bitstream.url.fl_str_mv https://repositorio.unh.edu.pe/bitstreams/20aa7526-d288-424f-8d4a-9d38d0045e89/download
https://repositorio.unh.edu.pe/bitstreams/a008b22a-9005-45fe-b285-aed2e6c253ab/download
https://repositorio.unh.edu.pe/bitstreams/b3669103-7db8-4420-9ec2-d23e4113dd0d/download
https://repositorio.unh.edu.pe/bitstreams/cba61b58-0a0f-4f96-af72-90598d39aeb8/download
bitstream.checksum.fl_str_mv 3e122350178f55d8e77e7e661e4a013d
0a703d871bf062c5fdc7850b1496693b
c52066b9c50a8f86be96c82978636682
4f17ccc1d99ea6ce1c1b50e2af2efd7e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Universidad Nacional de Huancavelica
repository.mail.fl_str_mv repositorio@unh.edu.pe
_version_ 1849234196987379712
spelling Ayala Bizarro, Iván ArturoDe la Cruz Lopez, HuberJurado Mamani, Víctor Raúl2020-06-11T16:13:18Z2020-06-11T16:13:18Z2019-11-22Con la presente investigación se ha construido un modelo de Inteligencia Artificial (Redes Neuronales Artificiales), que permita predecir el tiempo de demora de las intersecciones estudiadas. Para lograr el objetivo del proyecto de investigación se ha hecho el estudio de 8 intersecciones durante un periodo de tres meses. Siguiendo el análisis de cada intersección mediante la metodología HCM, para el procesamiento de datos para la construcción del modelo de la red neuronal artificial con la siguiente estructura: 10 variables de ingreso, las cuales son (tasa de flujo ajustada, tasa de flujo de saturación ajustada, relación de flujo, tiempo efectivo de luz verde, ciclo semafórico, la razón de luz verde, capacidad, razón, demora uniforme, demora residual); la cual para el entrenamiento se hizo diversas simulaciones haciendo el uso de la metodología de propagación inversa (back propagation), buscando el óptimo error cuadrático medio (MSE). La valoración se realizó en dos grupos de muestra: el primero de entrenamiento (training), y el segundo de validación (test) de los datos obtenidos de las intersecciones, usando la herramienta del sofware Matlab(toolbox). Los resultados obtenidos del proyecto de investigación evaluados mediante el análisis estadístico de error medio cuadrático (MSE), se dividen en: entrenamiento (64% de los datos), validación y prueba del (36% de los datos), y el modelo total (100% de los datos), donde el modelo total presenta una buena correlación siendo el entrenamiento(training) R=0.99976, validación R=0.99974, test R=0.99977, y obteniéndose un modelo de la Red Neuronal Artificial con R=0.99976, siendo R el coeficiente de determinación conocido como coeficiente de correlación Pearson, la cual demostrando ser eficaz para predecir el tiempo de demora del nivel de servicio de las intersecciones, se concluye que el modelo de la red neuronal artificial contribuye para predecir el tiempo de demora del nivel de servicio y así optimizar el congestionamiento vehicular. Palabras claves: Congestionamiento Vehicular, Predicción, Redes Neuronales ArtificialesTesisapplication/pdfhttp://repositorio.unh.edu.pe/handle/UNH/3064spaUniversidad Nacional de HuancavelicaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UNHUniversidad Nacional de Huancavelicareponame:UNH-Institucionalinstname:Universidad Nacional de Huancavelicainstacron:UNHCongestionamiento Vehicular Predicción Redes Neuronales ArtificialesTransportes"ANÁLISIS DEL CONGESTIONAMIENTO VEHICULAR PARA OPTIMIZAR EL SISTEMA DE TRANSPORTE MEDIANTE REDES NEURONALES ARTIFICIALES - CERCADO DE LA CIUDAD DE HUANCAVELICA 2019"info:eu-repo/semantics/bachelorThesisSUNEDUIngeniería CivilUniversidad Nacional de Huancavelica. Facultad de Ciencias de IngenieríaTitulo ProfesionalTitulo Profesional : Ingeniero CivilIngeniería CivilORIGINALTESIS-2019-ING. CIVIL-DE LA CRUZ LOPEZ Y JURADO MAMANI.pdfTESIS-2019-ING. CIVIL-DE LA CRUZ LOPEZ Y JURADO MAMANI.pdfapplication/pdf10297409https://repositorio.unh.edu.pe/bitstreams/20aa7526-d288-424f-8d4a-9d38d0045e89/download3e122350178f55d8e77e7e661e4a013dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81089https://repositorio.unh.edu.pe/bitstreams/a008b22a-9005-45fe-b285-aed2e6c253ab/download0a703d871bf062c5fdc7850b1496693bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unh.edu.pe/bitstreams/b3669103-7db8-4420-9ec2-d23e4113dd0d/downloadc52066b9c50a8f86be96c82978636682MD53TEXTTESIS-2019-ING. CIVIL-DE LA CRUZ LOPEZ Y JURADO MAMANI.pdf.txtTESIS-2019-ING. CIVIL-DE LA CRUZ LOPEZ Y JURADO MAMANI.pdf.txtExtracted texttext/plain393454https://repositorio.unh.edu.pe/bitstreams/cba61b58-0a0f-4f96-af72-90598d39aeb8/download4f17ccc1d99ea6ce1c1b50e2af2efd7eMD5420.500.14597/3064oai:repositorio.unh.edu.pe:20.500.14597/30642020-06-14 03:00:53.111https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unh.edu.peUniversidad Nacional de Huancavelicarepositorio@unh.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.350691
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).