Interpretación geométrica de las fórmulas de Frenet de curvas en el espacio euclidiano tetradimensional con el Mathematica

Descripción del Articulo

En este trabajo se define el producto cruz, se enuncian propiedades inherentes a este producto, se proporciona la interpretación geométrica del mismo, así como la interpretación geométrica del cuádruple producto escalar. Se definen formalmente los modelos para visualizar objetos del espacio euclidia...

Descripción completa

Detalles Bibliográficos
Autores: Vilcherrez Vilela, Rita Danitza, Poicón Cornejo, Hanai Miluska
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional de Piura
Repositorio:UNP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unp.edu.pe:20.500.12676/4803
Enlace del recurso:https://repositorio.unp.edu.pe/handle/20.500.12676/4803
Nivel de acceso:acceso abierto
Materia:curvas 4D
producto cruz de vectores 4D
fórmulas de Frenet de curvas en 4D
hipercilindros
http://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:En este trabajo se define el producto cruz, se enuncian propiedades inherentes a este producto, se proporciona la interpretación geométrica del mismo, así como la interpretación geométrica del cuádruple producto escalar. Se definen formalmente los modelos para visualizar objetos del espacio euclidiano de dimensión cuatro; se definen el campo vectorial tangente, el campo vectorial normal, el campo vectorial binormal, el campo vectorial trinormal, la curvatura, la torsión y la retorsión de curvas de rapidez unitaria en el espacio euclidiano de dimensión cuatro; se enuncian las fórmulas de Frenet para dichas curvas; se da la interpretación geométrica de la retorsión; se enuncian las fórmulas de Frenet para curvas de rapidez arbitraria y se proporcionan las técnicas de cálculo para calcular el campo vectorial tangente, el campo vectorial normal, el campo vectorial binormal, el campo vectorial trinormal, la curvatura, la torsión y la retorsión de curvas de rapidez arbitraria en el espacio euclidiano de dimensión cuatro. En todos los casos se hacen las respectivas demostraciones rigurosas. Además, se definen las técnicas para construir cilindros e hipercilindros en el espacio euclidiano de dimensión cuatro. Por último, se presentan los programas implementados, en el software Mathematica, para visualizar todos los resultados obtenidos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).